AND SYLLABI OF DIPLOMA PROGRAMME IN ELECTRONICS ENGINEERING

PROGRAMME STRUCTURE

UNDER RATIONALISED SEMESTER SYSTEM

(IMPLEMENTED FROM ACADEMIC YEAR 2019-20)

BOARD OF TECHNICAL EDUCATION, GOA STATE

DTE Building, Alto Porvorim, Bardez, Goa 403521

Ph. +91-832-2413571, +91-832-2412146 Fax +91-832-2413572

Email: dir-dte.goa@nic.in

March 2019

FOREWORD

I take this opportunity to putforth before you the Revised Curriculum for Diploma Programme in Electronics Engineering under Rationalised Semester System to be implemented from academic year 2019-20.

Shri Vivek B. Kamat, Director, Directorate of Technical Education triggered the idea of revision in Curriculum for various Diploma Programmes under 03/04 years Diploma Programmes. Director was instrumental in motivating the teaching faculties, offering technical guidance on continual basis for timely completion of said endeavour.

Dr. Krupashankara M.S. Chairman, BTE inspired the members of various Committees with NBA guidelines, January 2019. As per directives of Chairman BTE, Committees could execute CO-PO mapping, define the various levels as per Bloom's technology and thus can generate balanced question papers for internal/Board Examination.

I would like to appreciate Chairman of Courses committees alongwith sub-committee members, for having carried out the work, within the given schedule. I take this opportunity to thank Dr. V.N. Shet, Ex-Chairman, Board of Technical Education- Goa, Ms. Anjali Sardessai, Ms. Seema Naik, Mr. Rama Subhaji and all others who have directly/indirectly helped Board in achieving the goal.

This improvised Curriculum shall be beneficial to students Community at large, with updated knowledge database and can offer them better opportunities to seek employment in their relevant fields.

Thanking you,

(Shri.N.V.T. Pednekar)
Secretary
Board of Technical Education, Goa

Syllabus Drafting Committee for Diploma in Electronics Engineering

- 1) Shri. S. P. Borkar, Principal, Government Polytechnic, Bicholim
- 2) Shri. S.B. Patil, HOD, Dept. of Electronics & Communication Engg., ISBT Vasco
- 3) Smt. Komala Soares, HOD, Dept. of Electronics Engg., Government Polytechnic, Panaji
- 4) Shri Brain Soares, In-charge HOD, Dept. of Electronics &Instrumentation Engg., Government Polytechnic Panaji
- 5) Smt. Reena Fernandes, HOD, Dept. of Electronics Engg., Agnel Polytechnic, Verna
- 6) Shri Praveen Kamat, HOD, Dept. of Electrical & Electronics Engg., Government Polytechnic, Curchorem
- 7) Smt. Shweta Chanekar, In-charge HOD, Electronics & Communication Engg., Government Polytechnic, Bicholim
- 8) Smt. Sangeeta Doiphode, Lecturer-Selection Grade, Dept. of Electronics Engg, Agnel Polytechnic, Verna
- 9) Shri Rohan Naik, Lecturer, Dept. of Electronics & Communication Engg., Government Polytechnic, Bicholim
- 10) Smt. Josmina Fernandes, Lecturer, Dept. of Electronics & Instrumentation Engg., Government Polytechnic, Panaji

Syllabus Drafting Sub-Committee Members for Diploma in Electronics Engineering:

Sr.	Name	Designtion	Institute
No.	S.B.Patil		
1	Radha Mudholkar	HOD	
3		Lecturer	IGDT
-	Rupali Bamane	Lecturer	ISBT
4	Shalini Kunkoliencar	Lecturer	_
5	Priyanka Nadkarni	Lecturer	
6	Praveen Kamat	HOD	
7	Premanand Velip	Lecturer	
8	Zindia Raikar	Lecturer	GPC
9	Siddhi Pai	Lecturer	
10	Vaibhav Velip	Lecturer	
11	Shweta Chanekar	I/C HOD	
12	Sukanti Mardolkar	Lecturer	GPB
13	Dhanashri Talauliker	Lecturer	Grb
14	Rohan Naik	Lecturer	
15	Reena Fernandes	HOD	
16	Sangeeta Doiphode	Lecturer	
17	Santosh Chari	Lecturer	
18	Sunil Parab	Lecturer	
19	Fedora Dias	Lecturer	
20	Neofito Victor Rodigues	Lecturer	A DV
21	Harneet Assi	Lecturer	APV
22	Allan DaCosta	Lecturer	
23	Sandra Barreto	Lecturer	
24	Vidhya Sarmalkar	Lecturer	
25	Vandana Pai Fondekar	Lecturer	
26	Rosita D'Costa	Lecturer	
27	Komala Soares	HOD	
28	Sonali S. K. Satoskar	Lecturer	
29	Manisha Sajane	Lecturer	
30	Bhalchandra S. Nadkarni	Lecturer	GPP
31	Sheetal Pednekar	Lecturer	
32	Seema Avde	Lecturer	
33	Brian Soares	I/C HOD	
34	Josmina Fernandes	Lecturer	GPP

	DIPL	OMA IN ELECTRONICS E	NGIN	EER	RING -	CUR	RICUL	UM STR	RUCTUF	RE	
Semester	Code	Subjects	L	T	P	C	TH	TM	PR	TW	TOT
	GC102	Engineering Mathematics I	4	2	0	6	75	25	-	-	100
	GC103	Applied Physics I	4	0	2	6	75	25	-	25	125
FIRST	GC106	Basic Engineering Practice (Electronics & Computers)	0	0	4	4	-	-	50	75	125
	GC104	Applied Chemistry	3	0	2	5	75	25	-	25	125
	GC204	Engineering Drawing	2	0	4	6	-	-	50	50	100
			13	2	12	27	225	75	100	175	575
	GC201	Engineering Mathematics II	4	2	0	6	75	25	-	-	100
	GC202	Applied Physics II	3	0	2	5	75	25	-	25	125
	GC101	Communications Skills	0	0	2	2	-	-	25	25	50
SECOND	GC203	Environmental Science	3	0	0	3	75	25	-	-	100
	GC107	Basic Engineering Practice (Electrical & Mechanical)	0	0	6	6	-	-	50	100	150
	GC205	Engineering Materials	3	0	0	3	75	25	-	-	100
			13	2	10	25	300	100	75	150	625
	CC304	Basic Electrical Engineering	3	0	2	5	75	25	-	25	125
	EX302	Programming Constructs for Electronic Devices	0	0	4	4	-	-	50	25	75
THIRD	CC308	Basic Electronics Engineering	3	0	2	5	75	25	50	25	175
	CC309	Digital Electronics	3	0	2	5	75	25	50	25	175
	EX301	Communication Engineering	3	0	2	5	75	25	-	25	125
	CC303	Circuits & Networks	3	0	2	5	75	25	-	25	125
			15	0	14	29	375	125	150	150	800
	EX401	Electronic Circuits	3	0	2	5	75	25	25	25	150
	EX602	Power Electronics	3	0	2	5	75	25	-	25	125
	EX403	8051 Microcontroller	3	0	2	5	75	25	25	25	150
FOURTH	EX404	Maintenance and Circuit simulation using CADD	0	0	4	4	ı	-	50	50	100
	EX405	Linear Integrated Circuits	3	0	2	5	75	25	25	25	150
	EX406	Electronic Measurements & Instrumentation	3	0	2	5	75	25	-	25	125
			15	0	14	29	375	125	125	175	800
	TR501	Industrial Training	0	0	0	0	-	-	-	-	GRADE
	CC501	Entrepreneurship Development	0	0	2	2	-	-	-	25	25
FIFTH	EX501	Programmable logic Controllers	3	0	2	5	75	25	-	25	125
	CC601	Industrial Organization & Management	3	0	0	3	75	25	-	-	100
		Elective 1	3	0	2	5	75	25	25	25	150
			9	0	6	15	225	75	25	75	400

		DIPLOMA IN EN	GINE	ERI	NG CI	J RRI (CULUM	STRUC	TURE		
	Code	Subjects	L	T	P	C	TH	TM	PR	TW	TOT
	EX601	Audio and Video Engineering	3	0	2	5	75	25	-	25	125
SIXTH	CC602	Business Communication	0	0	2	2	-	-	50	50	100
	EX402	Industrial Electronics	3	0	2	5	75	25	-	25	125
		Elective 2	3	0	2	5	75	25	25	25	150
		Elective 3	3	0	2	5	75	25	25	25	150
	EX603	Project	0	0	8	8	-	-	50	100	150
			12	0	18	30	300	100	150	250	800
	m m				1 773 6) ()	2 75	13.6.1		*** 1
L- Lecturer	rs T – Tutoi	rial P – Practical C-Credits TH –		y Maı Aarks	ks TM	– Test	Marks Pl	≺ – Practı	cal Marks	TW-Te	rm Work

ELECTIVE GROUPS E1, E2, & E3

ELECTRONIC ENGG.
Elective 1: General (SEM V)
Biomedical Instrumentation
Autonomous Robots
Renewable energy
Electrical Machines
Web designing technologies
VHDL
Advanced microcontrollers
Data structures

ELECTRONIC ENGG.
Elective 2 & 3 (SEM VI)
Data Communication
Mobile communication
Digital Signal Processing
Consumer Electronics
Robotics
Image Processing
Smart Grid Technology
VLSI design and applications
Smart Sensor Networks

SEMESTER I

(GC102) Engineering Mathematics I

1. **AIM**

- 2. Developing the mathematical approach for solving engineering and technological problems.
- 3. The use of knowledge and understanding of mathematics in engineering context.
- 4. The selection of method of manipulation at appropriate place and time

2. COURSE OBJECTIVES:

The students will able to:

- 1. Acquire knowledge of Mathematical terms, concepts, principles and different methods.
- 2. Develop the ability to apply mathematical methods to solve technical problems, to execute management, plans with precision.
- 3. Acquire sufficient mathematical techniques necessary for daily and practical problems.

4. PRE-REQUISITES:

Students should know

- 1. Awareness of Co-ordinate Geometry.
- 2. The fundamentals of maths.

5.TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Perio	Periods/Week		Total	Examination Scheme				
course title	(in ho	ours)		Credits	Theory Marks		Tutorial Marks	Total Marks	
GC102	L	T	P	C	TH	TM	Tutorials Test		
Engineering Mathematics I	4	2	-	6	75	20	05	100	

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Apply formulae of algebra, geometry, trigonometry and calculus
- 2. Understand the concepts of calculus to solve the problems
- 3 Identify and apply the formulae of algebra and mensuration for solving practical engineering problems
- 4. Develop their lateral thinking abilities in solving mathematical problems

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific	Knowledge Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	2		1		2	
CO2	3	2			1		1
CO3	3	2				2	1
CO4	3			2		2	

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = C Objectives	ourse				
TT ·		Objectives		M	TI	CO	T 1
Unit				M	Thr	CO	Levels
1 MATHEM	IATICS FUNDAMENTA	L				CO-1,3	
multiplic be asked	1.1 Polynomials: Types of polynomials, addition subtraction, multiplication and division of polynomials (no question to be asked), Factorization of polynomials, Multiplication and division of polynomials						
geometri variables	aic equations: Different ty c meaning, Equations we and solving equations with c equations and nature of the	rith one, two and h two and three vari	three	2	2		
1.3: Logarith Properties of log	4	2					
2.STRAIGH	T LINES AND CIRCLES	S				CO-1 CO-4	
Equations of points form, p	line:Intercept, slope, inter line: 1. Slope intercept for parallel and perpendicular r distance of a point from 1	rm, slope point forn lines, angle between	-	8	7		
2.2: Circle: c	ircle as a locus, centre, dian circle: Centre radius form	meter, chord of a cir		7	7		
3. TRIGON	NOMETRY					CO-1, CO-4	
and related su 3.2: Trigonor 3.3: Trigonor 3.4: T.R.s of 3.5: Product t 3.6: Sum and 3.7: Multiple Multiple angl	and measurement, degree are ams, are length and area of metric ratios and identities metric ratios of compound at (A±B) and sums formulae sinA±sinB, cosA difference formulae angle 2A, and their trigonole 3A (only sine, cos tan, rates of Triangle sine rule, cos	resector and sums and allied angles +cosB ometric ratios, tios, no questions)		15	15		

4 :MENSURATION	10	8		
4.1: Areas of 2D figures like quadrilaterals, circle triangle etc			CO-3	
(no questions to be asked)				
4.2: Area and volumes of cube, sphere, cylinder, cone, prism, pyramid				
4.3 : frustum of cone, pyramid, sphere and their areas and				
volumes.				
4.4: Simpson's 1/3rd rule for area and volume				
5 :CALCULUS			CO-1,	
			CO-2, CO-4	
		<u> </u>	CO-4	
5.1:Limits 5.1.1 : Pre requisite : Sets , intervals relation, function	7	4		
(no questions to be asked) 5.1.2: Limit of a function, algebraic properties of limit				
5.1.3: limit of a lanction, algebraic properties of limit 5.1.3: limit of algebraic, trigonometric, exponential, logarithmic				
functions				
5.1.4: Trigonometric limit formulae in sine and tan, exponential				
& logarithmic limit formulae				
5.2 : Derivatives	15	12		
5.2 .1: Derivative definition by first principle (no question to be				
asked)				
5.2.2: Algebraic properties of derivative, standard formulae				
5.2.3: Derivatives of algebraic, trigonometric, exponential, logarithmic functions				
5.2.4: Derivatives of sum, difference ($u + v$)				
5.2.5: Derivative of product of functions uv, uvw rule.				
5.2.6: Derivative of u/v rule				
5.2.7: Derivative of composite function				
5.2.8: Derivative of parametric function				
5.2.9: Derivative of implicit function				
5.2.10 : Logarithmic differentiation 5.2.11: Second order derivatives (no question to be asked)				
5.2.11. Second order derivatives (no question to be asked)				
5.3 : Applications of derivatives	5	5		
5.3.1: Application to the geometry: i) derivative as a slope of a				
tangent				
ii) to find equations of tangent and normal at given point on the				
curve				
5.3.2:Application to the Linear motion:i) displacement,				
velocity, acceleration 5.3.3: Application to the rate measure i) to find rate change in				
area and volume etc				
5.3.4 : Maxima and minima				
Total	75	64		
	1	1	1]

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Mathematics Fundamental	06	08
2	Straight line and circle	14	15
3	Trigonometry	15	15
4	Mensuration	08	10
5	Calculus	21	27
	Total	64	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

Sr. No.	Unit	Sums per topic (minimum)	Tutorial test (marks)
1.	Mathematics Fundamental	20	
2.	Straight line and circle	20	
3.	Trigonometry	20	
4.	Mensuration	20	
5.	Calculus	30	
	Two Tutorial Tests should be conducted on topics which are not covered in the PA test, (each test of 5 marks and average to be taken)		
	Total		05

NOTE:

- Tutorial books should be maintained by students
- Teacher needs to sign for each topic in the index as well as inside on the last page of each topic where students solve sums.

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of	Publishers
		Books	
1	Mathematics for Polytechnic	S.P.	Pune VidyarthiGrihaPrakashan
	Students(Basic Mathematics)	Deshpande	1786, Sadashiv Peth, Pune
2	Mathematics for Polytechnic	S.P.	Pune VidyarthiGrihaPrakashan
	Students(Engineering	Deshpande	1786, Sadashiv Peth, Pune
	Mathematics)		
3	S.B. Gore, M.B.Patil, S.P.	Applied	Vrinda Publications
	Pawar	Mathematics	

Note: Any XI and XII science mathematics books can be referred to as reference books.

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Applied Mathematics I	Nandu Printers& Publishers pvt. Ltd. Mumbai		
2	H.K. Dass	Applied Mathematics for Polytechnics	CBS Publishers and distributers Pvt.Ltd.,Pune		
3	Seymour Lipschutz	Set Theory and related topics	McGraw-Hill		

(GC103) APPLIED PHYSICS I

1. AIM

1.To provide the students with the applied knowledge in physics aimed at topics in higher semesters.

2. COURSE OBJECTIVES / RATIONALE:

On successful completion of the course, the student will be able to:

1. Comprehend the various topics in the course and apply them to engineering applications.

3. PRE-REQUISITES:

Students should know

- 1. Various units and their conversions into other units.
- 2.Use of basic mathematical calculations.

3. TEACHING AND EXAMINATION SCHEME

Semester I									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(i	n hou	ırs)	Credits	Theory Practica Marks Marks			Total Marks	
(GC103)	L	T	P	С	TH	TM	TW	PR/OR	
APPLIED PHYSICS I	03	0	02	05	75	25	25	-	125

4.COURSE OUTCOMES:

The students will able to:

- 1.Understand the Fundamental concepts and principles of measurements of physical quantities used in engineering applications.
- 2. Apply the knowledge of statics and dynamics to determine the Work, Power and Energy used in different engineering applications.
- 3.Understand the different properties of matter and their significance in different engineering applications
- 4. Analyze the mechanism in solving simple problems of heat transfer taking place through different states of matter.

.

5. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic and disciplin e specific Dknowle dge	Problrm analysis	Design/ Develop ments of sloutions	Engineerin g tools/Exper imentation and testing	Engineeri ng practice for society sustainabi lity and environm ent	Project Manageme nt	Life Long Learni ng
CO 1	3	1		1			3
CO 2	3	1	2	2			1
CO 3	3	2	2	2			1
CO 4	3	3		2			3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	M	Th	CO
		r	
1 UNIT NAME: UNITS AND DIMENSIONS	08	12	CO1
1.1 Fundamental and Derived units ,			
1.2 Different system of units, SI unit conversion from one system to other,			
1.3 Principle of Homogeneity,			
1.4 Dimensions,dimensional formula,			
1.5 dimensional correctness of given equation using dimensions			
1.6 least count of vernier calliper and screw gauge			
1.7 zero errors in case of vernier calliper and screw gauge			
1.8 Types of error.			
2. UNIT NAME: MOTION IN ONE DIMENSION, FORCE, WORK AND ENERGY	12	19	CO2
2.1 distance and displacement,			
2.2 scalar and vectors			
2.3,speed and velocity, uniform velocity,			
2.4 uniform acceleration, acceleration due to gravity			
2.5 equation of motion (v=u+at, v ² =u ² +2as, s=ut+1/2at ²)(no derivation)			
2.6 motion under gravity. Force and its unit.			
2.7 Work and its unit. Energy, law of conservation of energy,			
2.8. Kinetic and potential energy equation and examples.			
3. UNIT NAME: Uniform Circular Motion and Gravitation	10	16	CO2
3.1 unifrom circular motion,			
3.2 definition angular displacement, angular velocity, ,			
3.3conversion from rpm to rad/sec,v=rω, tangential velocity, radial acceleration			-
3.4 centripetal force and centrifugal force, examples,			

	Τ		
3.5 banking of roads, superelevation, expression for angle of banking			
3.6 Newtons law of gravitation, acceleration due to gravity,			
3.7 Expression for acceleration due to gravity. Escape velocity, Critical			
velocity, and periodic time definition and expression (no derivation)			
3.8. sattellite, types(geosattionary,communication remote sensing)			
	1.0		
4. UNIT NAME: PROPERTIES OF MATTER	10	16	CO3
4.1 Elasticity,			
4.2 stress, strain,hooke's law,			
4.3 youngs modulus,			
4.4 bulk modulus, rigidity modulus,			
4.5 stress v/s strain graph			
4.6 yield point, breaking stress, factor of safety,			
4.7 surface tension definition and example			
4.8. adhesive and cohesive force, application,			
4.9 liquid miniscus and angle of contact, capillarity,			
4.10 expression for surface tension (no derivation), applications. viscocity,			
4.11 definition velocity gradient, newtons law of viscocity, terminal			
velocity, stokes law,			
4.12 streamline flow and turbulent flow, critical velocity, application of			
viscocity.			
5. UNIT NAME: HEAT	08	12	CO4
5.1 statements of boyles law, charles law, gay lussacs law			
5.2 general gas equation, specific heat definition and unit, Latent heat			
definition and unit			
5.3 Modes of transfer of heat, conduction, convection and radiation,			
5.4 Conduction of heat through a metall rod,			
٠			
5.5 variable and steady state			
5.6 law of thermal conductivity (With Derivation)			
5.7 applications of thermal conductivity			
5.8. thermal expansion of solids			
5.9 linear expansion, superficial expansion			
5.10Cubical Expansion			
5.11 Realtion betwenn α,β,γ (no derivation)			
5.12 Engineering applications of expansion of solids.			

7. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	UNITS AND DIMENSIONS	8	12
2	MOTION IN ONE DIMENSION, FORCE, WORK AND	12	19
	ENERGY		
3	UNIFORM CIRCULAR MOTION AND GRAVITATION	10	16
4	PROPERTIES OF MATTER	10	16
5	HEAT	8	12
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Basic Conversion Techniques from one system of units to the other	
2.	Use Of Vernier callipers to find the Volume of Hollow cylinder, Block	
3.	Use of Screw gauge to find the cross sectional area of a wire and thickness	
	of a clip	
4.	To find the Coefficient of Viscosity of a given liquid by stokes method	
5.	To Find the coefficient of Thermal Conductivity by Searle's Method	
6	To Find the Surface Tension of a given liquid by capillary rise method	
7	To Find Young's Modulus by Searles Method	
8	To Find acceleration due to gravity by simple pendulum method.	
	Total	25

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	
2	Bhandarkar	Applied Physics of Polytechnics	
3	R K Gaur and S L	Engineering Physics	
	Gupta		
4	B L Thereja	Engineering Technology	
5	Dr. Vasudev R.	A Text Book of Applied Physics for	
	Bhagwat	polytechnic students.	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Halliday D and	Physics Part I-II	
	Resnick		
2		ABC of Physics I=II	
3	Saxena HC and	Applied Physics Vol I & II	
	Singh Prabhakaer		

(GC106) Basic Engineering Practice (Mechanical & Electrical)

1. **AIM**:

To develop basic workshop skills and safety aspects necessary for a technician.

Rationale: A technician is expected to work on the shop floor. It therefore becomes essential for him/her to have a thorough exposure to safety aspects, firefighting, and first-aid as he/she is the guide for the skilled and unskilled personnel working under him/her. From technical knowledge and skills point of view he is also expected to have knowledge on proper ways of using various hand tools, measuring devices and drawings/circuit diagrams, in addition to other engineering skills

The course on Basic Engineering Skills will be providing him/ her the knowledge and skills in all those areas through shop floor instructions, demonstrations and skill development exercises.

2. PRE-REQUISITES:

- 1. Basic knowledge of Drawing.
- 2. Basic knowledge of Mathematics and Geometrical measurements.

3. TEACHING AND EXAMINATION SCHEME

Course Code	Periods/		ds/ Total		Examination Scheme				
& Course Week Title (In Hour			Credits	Theory Marks		Practical Marks		Total Marks	
(GC 106)	L	T	P	C	TH	TM	PR/OR	TW	
Basic Engineering Practice	0	0	6	6	-	-	50	100	150

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand safety procedures to be followed while using various tools and equipment.
- 2. Demonstrate basic working skills for marking, measuring, holding, striking and cutting tools & equipment.
- 3. Plan a job/activity using job drawing/circuit diagrams.
- 4. Identify various electrical components and their working

5. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentin g& Testing	Engg. Practices for Society Sustainabilit y & Environment	Project Management	Life -long Learning
CO1	3	1	1	2	2	0	3
CO2	3	2	1	2	2	0	3
CO3	3	1	2	2	2	0	3
CO4	3	2	2	2	2	0	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	3	3
CO3	2	2
CO4	1	1

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Pr	CO	Levels
1 General Safety, Housekeeping, Fire Fighting & First Aid	10	10		
1.1.Introduction to General Safety aspects of engineering workshop			CO1	1,2
1.2.Meaning and importance of housekeeping				
1.3. Fire hazards, fire triangle, types of fire extinguishers – selection and use				
1.4.Basic knowledge of first aid with specific inputs on cuts, burns,				
electric shocks, artificial respiration, handling emergencies				
2 Fitting Workshop Practice	30	24		
2.1 Introduction to the trade			CO1,	1,3,4
2.2 Introduction to various hand Tools, Measuring and Marking			CO2,	
Tools, cutting tools, Holding tools, Striking tools			CO3	
2.3 Types of files and filing methods.				
2.4 Drill bits and drilling Processes, using portable and pillar drilling machine.				
2.5 Operations performed in fitting shop such as measuring, marking,				
chipping, filing, grinding, sawing, drilling				
2.6 Threading using taps and dies.				
3 Carpentry Workshop Practice	20	20		
3.1 Introduction to carpentry			CO1,	1,3,4

22T C 1 1': 1 . ' C C 1 1 C . '		I	002	
3.2 Types of wood and its characteristics, forms of wood, defects in			CO2,	
timber and its identification, wood working hand tools			CO3	
3.3 Wood working processes.				
3.4 Different types of joints and their usage.				
3.5 Introduction to wood working machines:				
a. Lathe				
b. Circular saw				
c. Band saw				
d. Wood planner				
e. Universal wood working machine				
4 Electrical Workshop Practice	30	32		
4.1 Brief introduction to power distribution and Electrical Safety.			CO1,	1,3,4
4.2 Use of different hand tools used in electrical trade			CO3,	
4.3 Collection of details of motors and transformers.			CO4	
4.4 Introduction to Control Panel and its various				
sections/components.				
4.5 Making of wire joints.				
4.6Measurement of current, voltage, frequency and Power				
Consumption.				
4.7 Connecting and starting of Induction Motor & Measurement of				
its speed. Changing of Direction of rotation of induction motor.				
4.8 Introduction to commonly used electrical Fittings (Domestic &				
Industrial).				
4.9Wiring of Simple Electric Circuit (Bulb & plug point and				
switches) on wooden board				
4.10 Study, connection & use of Energy Meter				
4.11Testing of components using Series test lamp & Multimeter				
4.12Study of Fuses & practice replacement of Fuse				
4.13 Study & Troubleshooting of Tube Light				
5 Plumbing	10	10		
5.1 Plumbing tools, pipe fittings and method of joining pvc pipes.			CO1,	1,3,4
5.2 Use of spirit level and plumb bob.			CO2,)-)
5.3 Minor repairs and replacement of fittings.			CO3	
5.4 Reading of plumbing drawings.				
[Note: Plumbing restricted to domestic plumbing and pvc piping.]				
i i i i i i i i i i i i i i i i i i i				
Total	100	96		
		ı .	1	1

7. COURSE DELIVERY:

The course will be delivered through workshop practical sessions in mechanical and electrical workshops.

8. SPECIFICATION TABLE FOR PRACTICALS/ MACRO-LESSON PLAN

Unit No	Unit	Number of hrs.	Marks
1	General Safety, Housekeeping, Fire Fighting & First Aid	10	10
2	Fitting Workshop Practice	24	30
3	Carpentry Workshop Practice	20	20
4	Electrical Workshop Practice	32	30
5	Plumbing	10	10
	Total	96	100

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICAL MARKS.

No	Practical	Marks
1	Training on fire and emergency services (using video presentation	10
	/fire and safety expert talk/ training at fire and safety department)	
2	Job involving filing, drilling on MS block	30
3	Job involving sawing, planning, joint preparation, and assembly.	20
	Wood working exercise on turning.	
4	Exercise involving contents of Unit 4	30
5	Exercise involving contents of Unit 5	10
	Total	100

10. LEARNING RESOURCES

TEXT BOOKS

S.	Author	Title of Books	Publishers		
No.					
1	N. Sesha Prakash	Manual Of Fire Safety	CBS Publishers and Distributers		
2	S.K. Hajara-	Workshop Technology	Media Promoters		
	Chaudhary	-			
3	B.S. Raghuwanshi	Workshop Technology-	Dhanpat Rai and sons, New		
			Delhi		
4	R K Jain-	Production Technology	Khanna Publishers, New		
			Delhi		
5	H. S .Bawa	Workshop Technology	Tata McGraw Hill		
			Publishers, New Delhi		
6	Kent	Mechanical Engineering	John Wiley and Sons, New		
		Hand book	York		
7	B.L. Theraja	Fundamentals of	S. Chand – New Delhi		
		Electrical Engineering and			
		Electronics			

REFERENCE BOOKS FOR FURTHER STUDY

S. No.	Author	Title of Books	Publishers
1	CIMI- Central	Turner – Trade Theory – Ist and	Wiley Eastern Ltd.
	Instructional Media	IInd Year	New Delhi
	Institute Madras		
2	CIMI- Central	Turner – Trade Practicals- Ist and	Wiley Eastern Ltd.
	Instructional Media	IInd Year	New Delhi
	Institute Madras		
3	CIMI- Central	Fitter – Trade Theory- Ist and IInd	Wiley Eastern Ltd.
	Instructional Media	Year	New Delhi
	Institute Madras		
4	CIMI- Central	Fitter – Trade Practicals- Ist and	Wiley Eastern Ltd.
	Instructional Media	IInd Year	New Delhi
	Institute Madras		

INDIAN AND INTERNATIONAL CODES NEEDED

S. No.	Author	Title of Books	Publishers	
1	Bureau Of Indian	IS 2065 - 1983 : Code of practice	Bureau Of Indian	
	Standards New-	for water supply to buildings	Standards New-Delhi	
	Delhi			
2	Bureau Of Indian	IS 732: Indian Standard code of	Bureau Of Indian	
	Standards New-	practice for electrical wiring &	Standards New-Delhi	
	Delhi	installation.		
3	Bureau Of Indian	IS 2274 - 1963: Indian Standard	Bureau Of Indian	
	Standards New-	code of practice for electrical	Standards New-Delhi	
	Delhi	wiring & installation.		

INTERNET AND WEB RESOURCES

S. No.	Author	Link	Publishers
1	Vikas Rathore	Mortise & tenon joint prepared in	You tube
		carpentry shop(mec-108) of lovely	Lovely Professional
		professional university	University
2	Wood and Shop	How to Make Mortise and Tenon	You tube
	_	Joints with Hand Tools	Wood and Shop
3	Debabrata DD	ITI - Fitter Hand Tools Name	You Tube

VIDEOS AND MULTIMEDIA TUTORIALS

S. No.	Author	Title of Media	Publishers
1	Directorate of Fire	CD developed by Basic Fire Safety	Directorate of Fire
	and Emergency	and Evacuation Drill Procedure for	and Emergency
	Services ,	Educational Institutions	Services ,
	Government of Goa		Government of Goa
	St. Inez Panaji Goa		St. Inez Panaji Goa

Notes:

- 1] The Workshop diary shall be maintained by each student duly signed by instructor of respective shop
- 2] While conducting Practical/Oral Exam, it should be borne in mind that the examiners either internal or external should be from mechanical and electrical discipline.

(GN104) Applied Chemistry

- **1. AIM: 1.**To Understand the general chemical principles and chemical properties of materials for their applications in the Engineering field.
- 2. To develop in students scientific temper, ability to investigate the cause and effect relationship and the ability to interpret and analyze the result under given conditions.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Apply the knowledge of Chemistry in the field of Engineering.
- 2. Appreciate the importance of chemistry in day to day life.

3. PRE-REQUISITES:

Basic knowledge of General Science.

4. TEACHING AND EXAMINATION SCHEME

Semester	I									
Course code & Periods/Weel				Veek	Total	Examination Scheme				
course tit	course title (i		n hou	rs)	Credits	The	ory	Pra	ectical	Total
						Marks		Marks		Marks
GN 104 App	plied	L	T	P	C	TH	TM	TW	PR/OR	
Chemisti	ry	3	-	2	5	75	25	50	-	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the fundamental concepts and principles of chemistry in various engineering applications.
- 2. Apply the knowledge of Electrochemistry and Corrosion in everyday life and Industrial applications
- 3. Compare the properties of materials and their significance in various engineering fields.
- 4. Examine the suitability of chemical processes to be used for domestic and industrial applications.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Developmen t of Solutions	Engg. Tools, Experimenti ng& Testing	Engg. Practices for Society, Sustainabilit y & & Environmen	Project Managemen t	Life -long Learning
CO1	3	2	-	-	2	1	3
CO2	3	3	1	_	3	1	3
CO3	3	2	1	1	3	1	2
CO4	3	1	-	-	2	-	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	Mk	Thr	C	Le
	S		0	vel
				S
UNIT 1.0 : ATOMIC STRUCTURE AND CHEMICAL BONDING	15	10		
1.1 Atomic Structure	05	3	1	1,2
1.1.1 Fundamental particles and their characteristics.				
1.1.2 Energy levels - Definition & designation				
1.1.3 Sub Energy levels- Definition & designation				
1.1.4 Orbital – Concept & shape (s and p only)				
1.2Quantum numbers				
1.2.1 Designation, definition, values.				
1.3 Electronic distribution (Elements from atomic Number 1-20)	06	03	1	1,2
1.3.1 Bohr – Bury's laws for distribution of electrons in shells (1st three				,3
laws only)				
1.3.2 Aufbau Principle. for distribution of electrons in sub-shells				
1.3.3 Pauli's Exclusion Principle.				

1.3.4 Hund's Rule of maximum multiplicity 1.3.5 Orbital Electronic Configuration of elements (from atomic numbers 1 to 20 only).				
 1.4 Chemical Bonding 1.4.1 Lewis and Longmuir concept of stable configuration. 1.4.2 Electrovalent – Bond - Concept Formation of Electrovalent Compound (NaCl & MgO) 1.4.3 Covalent Bond- Concept Formation of Covalent Compounds (Cl₂, O₂, N₂) 1.4.4 Co-ordinate Bond- Concept Formation of Co-ordinate Compounds (O₃) 1.4.5 Properties of Electrovalent, Covalent & Co-ordinate compounds 	04	04	1,3	1,2 ,3
UNIT 2.0 : WATER	15	10		
2.1 Hardness of Water 2.1.1 Soft and Hard Water - Concept Soap Test (Chemical Equation not expected) 2.1.2 Causes of Hardness 2.1.3 Types of Hardness 2.1.4 Degree of Hardness & Units of Hardness (mg/L & ppm)	03	02	1	1,2
 2.2 Disadvantages of Hard Water 2.2.1 Domestic Purpose Drinking, cooking, Washing & Bathing. 2.2.2 Industrial Purpose (Paper Industry, Textile & Dyeing Industry, Sugar Industry, Bakery & Concrete Making) 2.2.3 Boilers- Steam Generation Purpose. Sludge formation – causes & Disadvantages (No chemical equation expected) 	04	03	1,4	1,2
2.3 Water Softening 2.3.1 Zeolite and Ion Exchange process of water softening	04	03	4	3
2.4 Desalination of water2.4.1 Electrodialysis & Reverse Osmosis process.2.4.2 pH- Concept, pH scale & Importance of pH	04	02	1,2	1,2
UNIT 3.0 : <u>ELECTROCHEMISTRY</u>	12	08		
3.1 Electrolytic dissociation 3.1.1 Arrhenius theory of Electrolytic dissociation 3.1.2 Factors affecting degree of Ionization- nature of solute, nature of solvent, concentration of solution and temperature.	04	03	1	1,2
3.2 Electrolysis 3.2.1 Mechanism of Electrolysis. Ionization Reactions	04	03	2,3	2,3

Reactions at cathode, Activity series of Cations. Reactions at Anode, Activity series of Anions. 3.2.2 Electrolysis of Molten NaCl using Carbon Electrodes. Aqueous NaCl using Platinum Electrodes. Aqueous CuSO ₄ using Platinum Electrodes. Aqueous CuSO4using copper Electrodes.				
3.3 Electrochemical series – Definition and Significance	04	02	2	2,3
UNIT 4.0 : CORROSION AND ITS CONTROL	25	14		
4.1 Dry /Direct Chemical corrosion 4.1.1 Definition 4.1.2 Oxidation corrosion 4.1.3 Corrosion due to other gases.	06	03	1,2	1,2
 4.2 Wet/Electrochemical Corrosion 4.2.1 Definition 4.2.2 Factors necessary for Electrochemical corrosion. 4.2.3Mechanism of Electrochemical corrosion(reactions at cathode and anode only) Hydrogen Evolution mechanism. Oxygen absorption mechanism. 	05	03	1,2	1,2
 4.3 Types of Electrochemical corrosion. 4.3.1 Galvanic Cell corrosion 4.3.2 Concentration cell corrosion(Metal ion concentration & differential Aeration) 	04	02	2,4	2,3
4.4 Corrosion Control Protection of metals by: 4.4.1. Using Pure Metals & Metal alloys 4.4.2 Proper designing 4.4.3 Modifying the environment (De- aeration, Deactivation, Dehumidification, Alkaline neutralization) 4.4.4 Cathodic protection (Sacrificial anode and Impressed current cathodic protection) 4.4.5 Metal Coating (Galvanizing, Tinning, Metal-Spraying, Electroplating & powder coating)	10	06	2,4	2,3
UNIT 5: POLYMERS	08	06		
5.1 Concept of Monomers & Polymers	04	04	3,4	2,3
5.2 Polymerization- Definition.				

5. 2.1 Addition polymerization-Definition.				
5.2.2 General equation of polymerization of :-				
Ethylene to Polyethylene.				
Vinyl chloride to Polyvinylchloride				
Tetra fluoro ethylene to Poly tetra fluoroethylene(PTFE)				
5.2.3 Condensation Polymerization-Definition				
5.2.4 General Equation for formation of Phenol formaldehyde Resin.				
5.3 Plastics.				
5.3.1 Types of plastic (Thermosetting and Thermo softening), Examples				
5.3.2Properties and applications of Poly-ethylene, PVC, polystyrene,				
Nylons, Bakelite & silicones.				
5.4 Rubber	04	02	3,4	2,3
5.4.1 Natural Rubber				
5.4.2 Drawbacks of Crude rubber.				
5.4.3 Vulcanization of Rubber (General Equation)				
5.4.4 Rubber examples.				
5.4.5 Properties of b Synthetic Rubber & related applications.				

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	ATOMIC STRUCTURE AND CHEMICAL BONDING	10	15
2	WATER	10	15
3	ELECTROCHEMISTRY	08	12
4	CORROSION & IT'S CONTROL	14	25
5	POLYMERS	06	08
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Practical Title	
1.	Double Acid-Base Titration using Phenolphthalein.	
2.	Acid- Base titration using Methyl orange.	
3.	Redox Titration of KMnO ₄ soln., FeSO ₄ soln. and Oxalic acid	
4.	Determination of degree of Hardness by E.D.T.A method.	
5.	Determination of Total Alkalinity of water sample.	
6.	Determination of Chloride content of water sample by Mohr's method.	
7.	pH- Metric titration.	
8.	Conduct metric Titration.	
9.	Determination of Conductivity of water samples from different water body sources.	
10.	Corrosion Susceptibility of Aluminum to Acid or Base.	
11.	Determination of pH of different food items.	
	Total	50
No	Class room Assignments	Marks
	TOTAL MARKS	50

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	M.M. Uppal	Text book of Engg. Chemistry	Khanna Publisher
2	V.P.Mehta	Text book of Engg. Chemistry	Jain Bros. Delhi
3	S.N Narkhede	Textbook of Engg. Chemistry	Niraj Prakashan
5	S S Dara	A Textbook of Engg. Chemistry	S Chand & Co
4	P.C. Jain and M.Jain	Engg. Chemistry.	Dhanpat Ra
			Publishing Co.

(GC204) ENGINEERING DRAWING

- **1. Aim:** This course is aimed at developing basic knowledge and skills of engineering drawing.
- **2. Rationale:**Drawing is a graphical language of engineering field. Engineering technician irrespective of his/her field of operation in an industry is expected to possess a thorough understanding of drawing, which includes visualization of objects and the proficiency in reading and interpreting a wide variety of engineering drawings. It is the skill, which translates an engineering idea into lines and dimensions. Besides this he/she is also expected to possess a certain degree of drafting skills- depending upon his/her job.

3.Pre-Requisite:

NIL

4. TEACHING AND EXAMINATION SCHEME:

Course Code	Periods/			Total		Examination Scheme				
& Course Title	Week (In Hours)		Credits	Theory Marks		Practica	Total Marks			
GC204	L	Т	P	С	ТН	TM	TW	PR/OR		
Engineering Drawing	2	-	4	6	-	-	50	50	100	

5. Course Outcomes:

On successful completion of the course the student will be able to:

CO1: Recognize different engineering curves and shapes and their applications

CO2: Understand different methods of projection.

CO3: Draw Isometric views and orthographic projection

CO4: Select the relevant techniques for Engineering Drawing.

6. Mapping Course Outcomes with Program Outcomes

Relationship-1:Slight (low) 2:Moderate(Medium) 3: Substantial(High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Basic	Problem	Design	Engg	Engg	Project	Lifelong
	and	analysis	and	tools	Practice	managem	learning
	discipline		developm	exptn and	for	ent	
	specific		ent of	& testing	society		
	knowled		solution		sustainab,		
	ge				ility and		
					environm		
					ent		
CO1		1	2	1	0	0	0
	3						
CO2	3	1	2	1	0	0	0
CO3	3	1	2	1	0	0	0
CO4	3	1	2	1	0	0	0

	PSO1	PSO2
CO1	1	1
CO2	1	1
CO3	1	1
CO4	1	1

7. Detailed course Contents/ Micro lesson plan

M=Marks

Thr= Teaching Hrs

CO=Course Outcomes

Unit	Mark	Thr	СО	Leve ls
 Introduction Importance of engineering drawing as a means of communication. Planning of drawing sheet as per SP 46:1988 Indian standard practices of laying out and folding of drawing Different types of lines used in engineering drawing. Importance of scale in Engineering Drawings. Lettering Methods of dimensioning, Dimensioning terms and notation (use of SP 46:1988), General rules for dimensioning, Dimensioning of cylinder, holes, arcs of circle, narrow space, angles, countersunk hole, taper. 	02	04	-	1
2. Geometrical construction & Engineering Curves	10	06	CO1	1
2.1Construction of an Equilateral and Isosceles triangle, Square, Regular pentagon & Regular hexagon given distance across the corners/ flats and given length of a side using general method of construction				
2.2 Construction of Engineering curves like:				
ellipse- by focus & directrix method and arcs of circles method				
parabola- by focus & directrix method and rectangle method				
hyperbola- Focus and directrix method				
2.3 Cycloid- by generating circle rolling on a straight line				
2.4 Involutes of a circle.				
2.5Draw normal & tangents to the above curves from given point on the curve				
rves to be explained with the help of applications.				
3. Orthographic projection	18	13	CO2	2,3
3.1 Definitions of various terms associated with orthographic projections. Planes of projections. Concept of Quadrants.			, CO3	
3.2 First and third angle method of projection.				

3.3 Projection of points 3.4 Projection of lines				
Parallel to both Principal planes				
Parallel to one and Perpendicular to other Principal plane.				
Inclined to one plane and parallel to other plane.				
3.5 Projection of planes: Triangle, Square, circle when inclined to one principal plane & perpendicular to other plane.3.6 Projection of solids: Cylinder, cone.				
Right regular solids such as				
 (i) Prism: Square& Pentagonal (ii) Pyramid: Triangular & Square. Projections of above mentioned solids when axis is inclined to one principal plane & Parallel to other principal plane. 				
3.7 Conversion of simple pictorial views into orthographic views.				
Problems where one end of the line is in one quadrant & other end in other quadrant and traces are to be excluded.				
Problems where apparent shape of plane are given, true shape & slope angle are to be drawn are excluded.				
4. Section of solids Development of lateral surfaces	10	05	CO4	4
4.1 Concept of sectioning planes, Auxiliary planes and true shape of section.				
4.2 Drawing section of solids like square prism, square pyramid, cylinder and cone with sectioning plane inclined to one principal plane and Perpendicular to the other principal plane (Axis of solid perpendicular to one principal plane and parallel to the other)				
4.3Concept and importance of surface development in the engineering field. Methods of development of surfaces-Radial & Parallel line method. Development of surfaces for solids like square prism, square pyramid, cylinder and cone.				
Development of solids standing on its base & cut by a plane inclined to either VP/HP and perpendicular to the other is also included.				
5. Isometric Views	10	04	CO3	3

5.1Difference between Isometric projection & Isometric view.			
5.2Isometric view of geometrical planes and solids.			
5.3Conversion of orthographic views into isometric views.			
5.4Construction of Isometric view for any real object.			
Total	50	32	

8. Course Delivery:

The course will be delivered through lectures class room interaction and exercises.

9. Specification table for Theory/Macro Lesson Plan

Unit No.	Unit	No. Of Lectures	Marks
1	Introduction	04	02
2	Geometrical construction & Engineering Curves	06	10
3	Orthographic projection	13	18
4	Section of solids Development of lateral surfaces	05	10
5	Isometric Views	04	10
	Total	32	50

10. Specification table for Practical/ Termwork:

No.	Practical	Marks
1	TYPES OF LINES, LETTERING, DIMENSIONING.	5
2	GEOMETRICAL CONSTRUCTIONS	5
3	ENGINEERING CURVES	5
4	PROJECTION OF POINTS & LINES	5
5	PROJECTION OF PLANES	5

6	PROJECTIONS OF SOLIDS	5
7	ORTHOGRAPHIC PROJECTIONS (First angle)	5
8	ORTHOGRAPHIC PROJECTIONS(Third angle)	5
9	SECTIONS AND DEVELOPMENT OF SOLIDS	5
10	ISOMETRIC VIEWS	5
	Total	50

11. Learning Resources:

Text Books

S.No.	Author	Title	Publisher
1	N.D. Bhatt	Engineering Drawing & Machine	Charoter Publisher, Anand
		Drawing	
2.	R. K. Dhawan	Engineering Drawing & Machine	S. Chand Publishing
		Drawing	
3.	R.B. Gupta	Engineering Drawing	Satya Prakashan, Delhi

Reference Books only for further study

S.No.	Author	Title	Publisher
1	P.S. Gill	Geometrical Drawing	Ketson & Sons
2	P.S. Gill	Machine Drawing	Ketson & Sons
3	N.D. Bhatt	MachineDrawing	Charoter Publisher, Anand
4	TTTI, Bhopal	Work Book in Mechanical	TTTI, Bhopal
	_	Drafting	_

Indian and International codes needed

S.No.	Author	Title	Publisher
1.	BIS, India	IS. 696. (Latest revision).	BIS, India

SEMESTER II

(GC201) Engineering Mathematics II

AIM

- 1. Acquire knowledge of mathematical terms, concepts, principles and different methods.
- 2. Develop the ability to apply mathematical methods to solve technical problems, to execute management, plans with precision.
- 3. Acquire sufficient mathematical techniques necessary for daily and practical problems.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Acquire knowledge of Mathematical terms, concepts, principles and different methods.
- 2. Develop the ability to apply mathematical methods to solve technical problems, to execute management, plans with precision.
- 3. Acquire sufficient mathematical techniques necessary for daily and practical problems.

3. PRE-REQUISITES: --

4. TEACHING AND EXAMINATION SCHEME

Semester II									
Course code &	Perio	ods/W	eek	Total	Exa	minatio	n Scheme	2	
course title	(in h	ours)		Credits	The Mar	•	Practica	al Marks	Total Marks
(GC201) Engineering	L	T	P	C	TH	TES T	Tutori al	PR/OR	
Mathematics II	4	2	-	6	75	20	5	-	100

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Use Determinants and Matrices to solve linear equations in engineering problems.
- 2. Recall formulae of integral calculus and use them in various applications.
- 3. Apply statistics formulae to compute various measures of central tendency and dispersion with the help of calculator.
- 4. Apply knowledge of vectors and complex numbers to be used in various areas of Engineering.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO	PO 7
						6	
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimenta tn& Testing	Engg. Practices for Society, Sust ainability & Environment	Project Management	Life -long Learning
CO1	3			2			1
CO2	3	1				1	
CO3	3			3			1
CO4	3				1		

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
Unit			M	Th r	СО	Le vel s
1.DETERM	INANTS AND MATRIC	ES			CO1	
1.1 Determ determinant, for solving ed	7	4				
1.2 Matrices: - Definition & order of matrix, types of matrices, Equality of matrices, addition & subtraction, multiplication of matrices, Adjoint &Inverse of a matrix, solution of linear equations with two & three variables using matrices				8		
2 .INTEGRA	ATION		20	22	CO2	

Definition, standard formulae, algebraic properties of Integration for sum, difference and scalar multiplication,	•			
integration of algebraic, trigonometric, inverse trigonometric,				
exponential, logarithmic, composite function, Integration by				
substitution, integration by partial fraction, Integration by parts				
3 .DEFINITE INTEGRALS	10	08	CO2	
Definition of definite integral and Properties of definite integral				
sums, substitution and integral by parts method with simple sums				
Applications: Area under the curves & lines and area between the	;			
curves and Volumes (simple sums)				
4 .VECTORS	15	12	CO4	
Definition of scalars & vectors, equality of vectors,				
Addition & subtraction of vectors, triangle, parallelogram laws for				
addition, position vector, dot product & cross product and their				
properties and applications, relation between dot and cross product				
and scalar triple product and applications				
5.STATISTICS / COMPLEX NUMBERS	15	10	CO3,	
			CO4	
			CO4	
5.1 Statistics :				
5.1.1:Measures of central Tendency -mean, median, mode for				
ungrouped & grouped data				
5.1.2:Measures of dispersion -Range, mean deviation, standard				
deviation, variance, coefficient of variation				
5.1.3: Corrected mean and relation between standard deviation and				
mean.				
5.2 Complex Numbers				
5.2.1:Definition of complex number and argand diagram, equality of				
complex numbers,				
5.2.2:powers of 'i', complex conjugates,5.2.3:Addition& subtraction of complex nos. Multiplication&				
division of complex nos.	'			
5.2.4: Modulus and argument of a complex number				
5.2.5:Polar form & exponential form of complex no.				
5.2.6: De Moivre's theorem., nth root of complex nos.				
5.2.7:Hyperbolic, exponential, circular functions				
Total	75	64		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
110		lectures	
1	Determinants & Matrices	12	15
2	Integration	22	20
3	Definite Integrals	08	10
4	Vectors	12	15
5	Statistics /Complex Number	10	15
	Total	64	75

10. SPECIFICATION TABLE FOR TUTORIALS HOURS-(N.A)

Sr.	Unit	Sums per	Tutorial
No.		topic	test
		(minimum)	
1.	Determinants & Matrices	20	
2.	Integration	30	
3.	Definite Integrals	20	
4.	Vectors	20	
5.	Statistics / Complex Number	20	
	(Two Tutorial Tests should be conducted on topics		
	which are not covered in the PA test, each of 5 marks		
	and average to be taken)		
	Total		05

- Tutorial books should be maintained by students
- Teacher needs to sign for each topic in the index as well as inside on the last page of each topic where students solve sums.

11. LEARNING RESOURCES

Text Books /reference books

S. No.	Author	Title of Books	Publishers
1	S.P. Deshpande	Mathematics for Polytechnic Students(Basic Mathematics)	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
2	S.P. Deshpande	Mathematics for Polytechnic Students(Engineering Mathematics)	Pune VidyarthiGrihaPrakashan 1786, Sadashiv Peth, Pune
3	S.B. Gore, M.B.Patil, S.P. Pawar	Applied Mathematics	Vrinda Publications

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Dr. U.B.Jangam, K.P. Patil, Nalini Kumthekar	Applied Mathematics I	Nandu Printers& Publishers Pvt. Ltd. Mumbai
2	H.K. Dass	Applied Mathematics for Polytechnics	
3	H.K. Dass	Advanced Engineering mathematics	S. Chand

Note: Any XI and XII science mathematics books can be referred to as reference books.

(GC202) APPLIED PHYSICS II

1. AIM

1.To provide the students with the applied knowledge in physics aimed at topics in higher semesters.

2. COURSE OBJECTIVES / RATIONALE:

On successful completion of the course, the student will be able to:

1. Comprehend the various topics in the course and apply them to engineering applications.

3. PRE-REQUISITES:

Students should know:

- 1. Basic principles of charges, electricity and magnetism
- 2. Use of basic mathematical calculations.

3. TEACHING AND EXAMINATION SCHEME

Semester II									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(i	in hou	ırs)	Credits	The	ory	Pra	actical	Total
				Marks		Marks		Marks	
(GC202)	L	T	P	C	TH	TM	TW	PR/OR	
Applied Physics	03	0	02	05	75	25	25		125
II									

4.COURSE OUTCOMES:

- 1.Understand the basic concepts in Electrostatics and Electricity apply them to solve basic problems.
- 2.Understand and apply various concepts of Electro Magnetism and Magnetic Induction and apply them in simple engineering applications
- 3. Analyze various principles of Optics in understanding the behaviour of light and understand its applications in laser etc.

4.Understand the basic concepts of production and application of X-rays and ultrasonic waves and analyse their applications for non-destructive testing

5. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic and discipline specific Dknowledge	Problrm analysis	Design/Devel opments of sloutions	Engineering tools/Experiment ation and testing	Engineering practice for society sustainability and environment	Project Management	Life Long Learning
CO 1	3	3	1	1			2
CO 2	2	3	1	2			2
CO 3	3	1	1	1			2
CO 4	3	1	1	2			3

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives			
Unit	M	Th r	СО
1 UNIT NAME: ELECTROSTATICS	12	8	CO1
1.1Coulomb's law, electric field			
1.2 Electric field Intensity, electric lines of force and properties			
1.3 Electric potential, definition of absolute potential			
1.4, Potential difference, potential of sphere			
1.5 Potential of earth.			
1.6Capacitance			
1.7 Capacitors in parallel derivation of expression			
1.8. Capacitor in series derivation of expression			
2. UNIT NAME: CURRENT ELECTRICITY	20	12	CO1
2.1Definition of Electric Current and its Unit, Ohm's Law, Resistance,			
2.2 Factors on which resistance depends, Specific resistance. Effect of			
temperature on resistance			
Temperature coefficient of resistance,			
2.3Resistances in Series and parallel			
2.4EMF and Internal resistance of cell			
2.5 General Equation of ohm's law.			
2.6. Wheatstone's Network and Principle of Meter Bridge			
2.7 Principle of Potentiometer (Va L) and Applications to compare EMF of			
given cells by single cell method and sum difference method			

2.8 Determination of Internal resistance of a cell using potentiometer.			
2.9 Electric Power and Electric Energy, KWh			
2.10 Calculation of Energy bills			
2.11 Heating Effect of Electric current. Joule's law.			
2.12 Applications in house hold appliances			
3.O. UNIT NAME: ELECTROMAGNETISM AND EM INDUCTION	16	10	CO2
3.1 Magnet, Magnetic field, Magnetic flux, and magnetic flux density and			
its unit			
3.2 Magnetic effect of Current, Oersted's Experiment, Right hand Thumb			
Rule, Biot Savart law			
2.2 Manustic Cald at the contant of the call (a. d.		-	
3.3 Magnetic field at the center of the coil (no derivation), Magnetic field			
due to coil (Qualitative discussion only			
3.4Electromagnet. Force acting on a current carrying conductor placed in			
magnetic field and expression (no derivation)			
3.5 Fleming's left-hand rule. Electromagnetic Induction. Faraday's			
Experiment			
Experiment			
3.6. Faraday's laws Lenz's law. Self-Induction and Mutual Induction.			
3.7 Transformer Principle.			
3.8 Step up and Step-down transformer.			
3.9 Induction Heating			
5			
3.10 Induction heater and uses			
4.O. UNIT NAME: Light and Optics	16	10	CO3
4.1Frequency Range of Infrared, ultraviolet and visible light and their uses			
4.2 Reflection, Refraction, snell's law, refractive index.			
4.3Refraction through glass slab and prism.			
4.4Total Internal reflection applications in optical fibers.			
A.S. A. Landerson, G. and and Gilliam J. A.CED.			
4.5 Advantages of optical fibers. LASER, sources and applications.			
4.6. Luminous Intensity, Intensity of Illumination			
4.7 Inverse square law of Illumination (No derivation)			
4.8 Principle of Photometr, X rays,			
4.9 Production of X Rays by Coolidge tube			
1.5 I reduction of A Rays by Coolinge tube			
4.10 Properties and applications			
5. UNIT NAME: SOUND	11	08	CO4
5.1 sound as longitudinal wave, wavelength, frequency, time period,			
amplitude,			
* '	1		

5.2 free vibration force vibration,resonance, examples,		
5.3echo reverberation ,pitch loudeness,intensity of sound,		
5.4Ultrasonic waves, Piezo electric effect, Principle of Production of ultrasonics waves		
5.5 Application of Ultra sonics in finding depth of sea,		
5.6. Detection of flaws in metal, soldering, Drilling,		
5.7 Ultrasonic Cleaning		
5.8Ultrasound for medical purposes.(Just Uses)		

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of	Marks
			lectures	
1	ELECTROSTATICS		8	12
2	CURRENT ELECTRICITY		12	20
3	ELECTROMAGNETISM AND EM INDUCTION		10	16
4	LIGHT AND OPTICS		10	16
5	SOUND		8	12
		Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical							
1.	Specific Resistance by Ammeter Voltmeter Method							
2	Specific Resistance by Meter Bridge Method							
3	To Verify the Series Law of Resistance by Meter Bridge Method							
4	To Verify the Parallel Law of Resistance by Meter Bridge Method							
5	To Compare the emf of two cells by single cell method							
6	To find the internal resistance of a cell by Potentiometer Method							
7	To find the velocity of sound by Resonance Tube method							
8	To find the Refractive index							

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	B G Dhande	Applied Physics of Polytechnics	
2	Bhandarkar	Applied Physics of Polytechnics	
3	R K Gaur and S L	Engineering Physics	
	Gupta		
4	Dr. Vasudev R	A Text Book of Applied Physics for	
	Bhagwat	Polytechnics	
5	B L Thereja	Engineering Technology	

Reference Books for further study

S. No.	Author			Title of Books	Publishers
1	Halliday	D	and	Physics Part I-II	
	Resnick				
2				ABC of Physics I-II	
3	Saxena	НС	and	Applied Physics Vol I & II	
	Singh Pra	bhaka	r		

(GC101) Communication Skills

1. AIM

To enable the students to develop proficiency in communicating in the work environment

2. COURSE OBJECTIVES:

The students will able to:

- 1. develop effective communication skills in written form
- 2. develop effective communication skills in oral form
- 3. develop a dynamic personality through knowledge of etiquettes and positive body language

3. PRE-REQUISITES:

A basic understanding of the principles and techniques of English language

4. TEACHING AND EXAMINATION SCHEME

Semester II									
Course code &	Peri	iods/V	Veek	Total		Exan	ination	Scheme	
course title	(iı	n hou	rs)	Credits	Theory		Practical		Total
					Marks		Marks		Marks
(GC101)	L	T	P	C	TH	TM	TW	PR/OR	
Communication	-	-	02	02	-	-	25	25	50
Skills									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. understand the concepts of spoken and written English
- 2. apply the principles of spoken and written English in groups and organizations
- 3. analyse and organize the information that is required to be presented in written and oral communication.
- 4. develop etiquettes in inter-personal communication while projecting a positive body language

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Developm ent of	gg. ols, oerim n&	Engg. Practices for Society, Sustainabi	ject nagen	Life -long Learning
CO1	01	01	01	01	02	01	03
CO2	02	01	02	01	02	02	03
CO3	02	02	02	01	02	02	02
CO4	01	01	01	01	01	02	03

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Ph	CO	Level
		r		S
1 UNIT NAME: Fundamentals of communication Skills	-			M,
1.1 Communication skills fundamentals		01		
Definition, communication process, importance of communication skills, essentials of effective communication				
			CO 01	
1.2 Types of communication : verbal Communication and Non verbal communication (Body language, facial expressions, gestures, eye contact, posture, dress and grooming/personal appearance, deportment, personal hygiene) Paralinguistic (Volume, pace, pitch, pauses)		02	CO 02 CO 03 CO 04	
1.3 Barriers to communication: physical barriers, psychological barriers and cultural barriers		01		

2. Unit: PRESENTATION SKILLS		
2. Can. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		
2.1 Presentations: Methods and style of presentation, Importance, planning a presentation, venue selection, audience awareness(age, gender, profession background, educational and social background) time and duration, audio visual aids (OHP, LCD projector, flip charts, white/black/green board, computer, microphone)	02	CO02 CO03 CO04
2.2 Public speaking: preparatory steps, tips for good beginning and end, delivery style, techniques for a good speech(repetition, signs, pictures, humor), body language	02	
3 UNIT: TECHNICAL Writing		
3.1 Report writing Functions and parts of a report, Qualities of a good report, and types: Report on any institute function, Accident report, Industrial visit Report	04	
3.2 Business letters Principles of effective letter writing, parts of a business letter, formats(Full block style, Semi block style, modified block style) Routine/ Generic letters(letter to the heads of the institute, letter to the heads of various departments/sections of the institute) Types of letters: Enquiry Letter, Quotation, Purchase Order, Letter of Complaint	06	CO 01 CO 02
3.3 Job application Tips for a good C.V and a Resume	02	
4 UNIT GRAMMAR	-	
4.1 Fundamentals of English writing Subject verb agreement, homonyms, homophones, homographs, articles, Punctuation, synonyms, fundamentals of sentence construction	02	CO 01 CO 02
4.2 Paragraph Writing: Developing Topics (the main idea), body (supporting sentences), conclusion, proof reading	02	
UNIT V:LANGUAGE WORKSHOP 5.1 Reading Skills strategies to use for building vocabulary and reading fluencies (read extensively, identify new words ,use of dictionary, online dictionary apps), reading comprehension, pronunciation, , debate, role play, 5.2 Listening Skills How to listen effectively, listening comprehension 5.3 Speaking skills speech, group discussion	- 08	CO 01 CO 02 CO 03
5.4 Writing skills précis writing, comprehension		
Total	32	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, videos, exercises

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Fundamental of Communications skills	04	-
2	Presentation Skills	04	-
3	Technical Writing	12	-
4	Grammar	04	-
5	Language workshop	08	-
	Tota	1 32	25

10. SPEC IFIC ATIO N TABL E

FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Practical Title: Fundamental of Communications skills	
i.	Comprehension	
ii.	Précis writing	
iii.	Self Introduction	
2	Practical Title: Presentation Skills	
iv.	Extempore speech	
v.	Presentation on any given Topic	
3	Practical Title: Technical Writing	
vi.	Accident Report	
vii.	Report on Institute function	
viii.	Industrial visit report	
ix.	Generic letters to the heads of various department/ Sections of the institute	
X.	Inquiry letter	
xi.	Quotation	
xii.	Purchase or supply order	
xiii.	Complaint letter	
xiv.	Job application	
4	Grammar	
XV.	Exercises in subject – verb agreement	
xvi.	Exercises in use of preposition	
xvii.	Exercises in use of Homophones, homonyms, homographs	
xviii.	Exercises in use of punctuation	
xix.	Exercises relating to correcting the sentences	
XX.	Paragraph writing	
5	Language workshop	
xxi.	Exercises to improve Reading skills	
xxii.	Exercises to improve Writing skills	

xxiii.	Group discussion	
xxiv.	Listening comprehension	
	Total	25
No	Class room Assignments	Marks
1	As Above	-
2		
No	Tutorial Exercises	Marks
1	Not Applicable	-
2		
•••		

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	R. C. Sharma &	Business correspondence and	Tata Mc Graw Hill	
	Krishna Mohan	Technical Writing		
2	P. Prasad, Sharma,	The functional aspects of	S.k. Kataria & sons	
	K. Rajendra	communication skills		
3	Raul R. Timm	How to make winning presentations	Sneha Printers	
4	Dale Carnegie, Stand and Deliver, How to become		Cox & Wyman, UK	
	Training CPI	a masterful communicator and		
		public speaker		
5	Wren & Martin	High School English Grammar &	S. Chand, N. Delhi	
		Composition		

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Lee Iacocca	Lee Iacocca- An autobiography	
2	Barrack Obama	Dreams of my father	
3	Chetan Bhagat	Two states, Half Girl friend	
4			

Autobiographies, self help books, Audio speeches given by famous personalities

Internet and Web Resources

https://www.grammarly.com/

 $\frac{https://www.bbc.co.uk/programmes/articles/5QFnVy3xzT5htTh13cmP2P8/teacher-resources}{https://Ted.com}$

Videos and Multimedia Tutorials

https://you.tu.be/AykYRO5d II

(GC203)Environmental Studies

1. AIM :- To Sensitize the students towards the need to protect and conserve Planets Natural resources and biological support systems & Strive to live in harmony with nature.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Develop an attitude of concern for the environment.
- 2. Choose environmentally friendly options for sustainable development.

3. PRE-REQUISITES:

- 1. Awareness of Elementary Environmental Education.
- 2. Fundamentals of General Science.

4. TEACHING AND EXAMINATION SCHEME

Semester	II									
Course code			riods/W in hour		Total Credits	Examination Scheme				
						Theory	Theory Marks Practical Marks		Total Marks	
GC203		L	T	P	С	TH	TM	TW	PR/OR	
Environmen	ntal									
Studies		03	-	_	03	75	25	_	_	50

5. COURSE OUTCOMES:

On successful completion of the course, the students will be able to:

- 1. Understand the importance of Natural resources & Biological support systems and hence the need for their conservation.
- 2. Identify the sources and effects of various forms of pollution.
- 3. Examine the impact of human intervention on environment.
- 4. Choose environmentally friendly options for sustainable development.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimenta tn& Testing	Engg. Practices for Society, Sust ainability & Environment	Project Management	Life -long Learning
CO1	2	1	1	0	2	1	2
CO2	1	2	1	0	2	1	2
CO3	2	2	1	0	3	2	2
CO4	2	2	1	1	3	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
Unit			Mks	Th r	СО	Level s
UNIT 1.0 : N	Iultidisciplinary Nature	of Environmental Studies	09	05	1,4	1,2,3
1.1 Environr	mental studies : Definition	, Scope and Importance				
1.2 Need for	Public Awareness					
1.3 Environn	nent & Human Health					
1.4 Environn	nental Ethics					
1.5 Value Ed	ucation					
1.6 From U Guidelines	Jnsustainable to Sustaina	able Development : Concept and				

1.7 Concept of Environmental Audit (EA)				
Environment Impact Assessment (EIA)				
1.8 Ecological Foot Prints				
UNIT 2.0: ECOSYSTEM AND BIODIVERSITY	15	09		
Civil 2.0. Decision in the biodiversity				
2.1 Ecosystem	06	04	1	1,2,3
2.1.1Concept, Structure & functions of ecosystem				-,-,-
(Function of producer, consumer and decomposer)				
2.1.2 Food chain & Food web- Concept & Examples				
2.1.3 Energy flow in Ecosystem				
2.1.4 Ecological Pyramids (Inverted & Upright)				
Pyramid of Number, Biomass & Energy.				
2.1.5 Ecological Succession (Primary & Secondary Succession)				
2.1.5 Ecological Succession (Triniary & Secondary Succession) 2.1.6 Study of Ecosystem: characteristic features structure and functions)				
Terrestrial (Forest, Grassland, Desert) Aquatic (Pond, River & Ocean)				
Terresural (Porest, Grassland, Desert) Aquadic (Pond, River & Ocean)				
2.2 Biodiversity	09	05	1,2	1,2,3
2.2.1 Definition of Biodiversity		05	1,2	1,2,3
2.2.2. Types of Diversity (Genetic, Species & Ecosystem)				
2.2.3. Value of Biodiversity (Consumptive, Productive, Social, Aesthetic				
Moral & Optional value)				
2.2.4 India as a Mega- diversity Nation				
2.2.5 Biogeographical classification of India				
2.2.6 Extinct, Endangered, Threatened & Endemic Species -Examples (of				
India)				
2.2.7 Threats to Biodiversity (Habitat loss, Poaching of Wild life & Man				
Wildlife Conflict)				
2.2.8 Reasons for loss of Biodiversity				
2.2.9 Conservation of Biodiversity (Insitu & Exsitu conservation)				
UNIT 3.0 : NATURAL RESOURCES	18	12		
3.1Forest Resource	09	06	1,2,3	1,2,3
3.1.1 Direct & Indirect value of Forest			, ,	
3.1.2 Deforestation-causes & effects				
3.1.3 Forest Management				
<i>6</i>				
3.2 Water Resource				
3.2.1 Water as a scarce Resourc				
3.2.2Use and over exploitation of surface and ground water				
3.2.3 Need for Water Conservation				
3.2.4 Construction of dams- Benefits and draw backs				
(Rehabilitation & Resettlement of people)				
3.2.5 Rain water Harvesting.				
3.2.6 Watershed Management				
D.Z.O weetonedmagement	<u> </u>	1	1	<u> </u>

3.2.7 Conflicts over water in India				
3.3 Energy Resource 3.3.1 Renewable & Non-Renewable sources of Energy 3.3.2 Growing Energy Needs. 3.3.3 Alternate Source of Energy (Solar ,Wind, Bio, Geothermal, Hydro & Nuclear Energy)				
3.4Food Resource 3.4.1 Sources of Food 3.4.2 World Food Problems (Undernourishment & Malnourishment) 3.4.3 Changes caused by agriculture & overgrazing 3.4.5 Effects of modern agriculture on environment (use of synthetic fertilizers & synthetic pesticides in agriculture) 3.5Mineral Resource 3.5.1 Types of Minerals 3.5.2 Use & Overexploitation of Minerals 3.5.3 Environmental Impact of Mining. 3.6Land Resource 3.6.1 Pattern of Land Utilization (In India and World) 3.6.2 Land Degradation – Causes & Control Measures	09	06	1,2,3	1,2,3
UNIT 4.0: ENVIRONMENTAL POLLUTION- Sources, Effects &	24	16		
4.1 Air Pollution 4.1.1 Definition, sources of air pollution(Primary and Secondary air pollutants with examples) 4.1.2 Effects on human health, animals, plants & Materials 4.1.3 Control of Air Pollution. 4.1.4 Removal of Particulate matter 4.1.5 Principles & Application of Control Equipments (Gravity and Inertial Separators, Cyclones, Filters, Electrostatic precipitators, Wet scrubbers) 4.1.6 Removal of Gaseous Pollutants (Combustion, Adsorption, Absorption) 4.1.7 Global Issues Definition, Cause & effects of Green House effect & Global Warming. Ozone layer Depletion, Acid Rain.	06	04	1,2,3	1,2,3
4.6 Noise Pollution:- 4.6.1 Definition. 4.6.2 Sources of Noise Pollution 4.6.3 Effects of Noise Pollution on Human health (Noise Induced hearing loss, Physiological & Psychological Effects)	06	04	1,2,3	1,2,3

4.6.4 Control of Noise Pollution.				
4.7. Nuclear Pollution / Radioactive Pollution:- 4.7.1 Definition 4.7.2. Sources of nuclear Pollution (Natural & Man made) 4.7.3. Effects of Nuclear Pollution 4.7.4. Control of Nuclear Pollution 4.7.5. Disposal of Nuclear waste (Low, Medium & High activity waste) 4.7.6 Nuclear Accidents & Holocaust – case study	06	04	1,2,3	1,2,3
4.8 Solid Waste Pollution. Definition: Refuse, Garbage Sources of Solid waste Types of solid waste (MSW, HW, BMW & EW) Effects of Consumerism Segregation of Solid waste at source Treatment of MSW (Open dumping, Land filling, incineration & composting) Waste Utilization (Reuse, Reclaim & Recycle) Solid waste Management System – Flow sheet diagram 4.9 Role of an Individual in Prevention of Pollution.	06	04	1,2,3	1,2,3
UNIT 5.0: SOCIAL ISSUES & ENVIRONMENT	09	06		
5.1 Environmental Legislation Article 47 & Article 51-A(g)of the constitution on Environment. 5.1.1 Protection Functions of Ministry of Environment and Forest Govt. of India Objectives & Functions of Central & state pollution Control Boards Environmental Protection Act. Air (Prevention & Control of Pollution) Act. Water (Preventation & Control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Motor vehicle Act.	06	03	1	1,2
 5.2 Social Issues 5.2.1 Women & Child Welfare 5.2.2 Role of IT in Environment & Human Health 5.2.3 AIDS 5.2.4 Population Growth & Variation among Nations 5.2.5 Human Rights 	03	03	1,4	1,2

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit			Number of lectures	Marks
1	MULTI-DISCIPLINARY	NATURE	OF	05	09
	ENVIRONMENTAL STUDIE	S			
2	ECOSYSTEM AND BIODIVE	ERSITY		09	15
3	NATURAL RESOURCES			12	18
4	ENVIRONMENTAL POLLUT	ΓΙΟΝ		16	24
5	SOCIAL ISSUES & ENVIRO	NMENT		06	09
			Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Practical Title	
	Total	25
No	Class room Assignments	Marks
1	Atleast 02	
2		
•••		
No	Tutorial Exercise	Marks
1		
2		
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Erach Bharucha	Textbook of Environmental Studies	Universities Press
			(India) Private Ltd.
2	Dr. Suresh K.	Environmental studies	S.K. Kataria & Sons
	Dhameja		
3	Y. Anjaneyulu	Introduction to Environmental	B.S Publications
		Science	
4	S. Deswal & A.	A Basic Cource in Environmental	Dhanpat Rai & Co.
	Deswal	Studies	_
5	P. Meenakshi	Elements of Environmental Science	Prentice Hall of India
		and Engineering	(PHI)

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Pandya and Camy	Environmental Engineering	Tata McGraw Hill
2	Asthana D.K. and	Environmental Problems and	S. Chand & Co.
	Asthana Meera	Solutions	
3	Gilbert M. Masters	Introduction to Environmental	Prentice Hall of India
		Engineering and Science.	(PHI)
4.	M N Rao & HVN	Air Pollution	Tata McGraw Hill
	Rao		

(GC107) BASIC ENGINEERING PRACTICE (ELECTRONICS& COMPUTERS)

- **1. AIM:** To impart basic electronics and computer programming knowledge to the students.
- 2. COURSE OBJECTIVES: In this course the students will learn the following:
- 1. Basic electronic components, their functions and uses.
- 2. Use of basic electronic test and measuring equipment.
- 3. Basics of computer programming and problem solving techniques.
- 4. Writing algorithms and drawing flowcharts.
- 3. PRE-REQUISITES:NIL

4. TEACHING AND EXAMINATION SCHEME

First Year	Periods/Week (in hours)			Total Credits	Examination Scheme				
Course code & course title	(e code &			Theory Marks		Pra M	Total Marks
GC107	L	T	P	С	TH	TM	TW	PR/OR	
Basic Engineering Practice (Electronics & Computers)	-	-	4	4	-	-	75	50	125

- **5. COURSE OUTCOMES:** On successful completion of the course, the students will be able to:
- CO1: Explain different electronic components.
- CO2: Make use of various electronic equipment.
- CO3: Explain and use programming concepts for computer programming.
- CO4: Develop algorithms and draw flowcharts for problem solving.

6. MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	2	2	1	0	2	0	0
CO2	2	2	1	3	2	0	0
CO3	2	2	0	0	0	0	1
CO4	2	3	2	2	2	0	1

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS

M=Marks	Thr= Teaching hours	CO = Course Outcomes	L=L	evel		
	UNIT	M	Thr	CO	L	
UNIT I	1 INTRODUCTION TO	22	20	CO1	2	
	1.1 Basic Electronic compo	onents				
	1.1.1 Passive compone	ents: Identification,Functions				
	and Applications	S				
	1.1.1.1 Resistor					
		termining values using color odes				
	1.1.1.1.2 Va 1.1.1.1.3 LD					
	1.1.1.2 Capacito	or				
		termining values of capacitors				
	1.1.1.3 Inductor					
		nts: Identification & Functions				
	1.1.2.1 Semicon					
	1.1.2.2 Zener D	iodes				
	1.1.2.3 LED					
	1.1.2.4 Transisto	· ·				
	1.1.2.5 IC 7404					
		(Voltage Regulator IC)				
	1.2 Power Electronic Device	ces: Identification & Functions				

	1.0.1.000	1	I	ı	
	1.2.1 SCR				
	1.2.2 DIAC				
	1.2.3 TRIAC				
	1.2.4 UJT 1.2.5 PUT				
	1.3 Breadboard				
	1.3.1 Brief Introduction				
	1.3.2 Continuity check on the Breadboard 1.3.3 Connection of the various components				
	on the Breadboard				
	on the breadoourd				
UNIT II	2 INTRODUCTION TO BASIC ELECTRONICS	15	12	CO1,	2,
	EQUIPMENTS			CO2	3
	2.1 Digital Multimeter			002	
	2.1.1 Brief Introduction				
	2.1.2 Various Knobs/functions				
	2.1.3 Applications				
	2.1.3.1 Measurement of resistance				
	2.1.3.2 Measurement of capacitance				
	2.1.3.3 Measurement of voltage and Current				
	2.1.3.4 Continuity check				
	2.1.3.5 Testing of relays				
	2.2 Power supply				
	2.2.1 Brief Introduction				
	2.2.2 Block diagram				
	2.3 Function Generators				
	2.3.1 Brief Introduction				
	2.3.2 Application				
	2.4 Cathode Ray Oscilloscope (CRO)				
	2.4.1 Brief Introduction				
	2.4.2 Application				
	2.5 Soldering and Desoldering				
	2.5.1 Definitions				
	2.5.2 Soldering iron				
	2.5.2.1 Types				
	2.5.2.2 Safety measures				
	2.5.3 Introduction to flux				
	2.5.4 Soldering wire				
	2.5.5 Solder paste				
	2.5.6 Soldering and Desoldering procedure				

UNIT III	3. COMPUTER PROGRAMMING	13	11	CO3	2
	3.1 Computer Terminology				
	3.1.1 Instruction				
	3.1.2 Program				
	3.1.3 Software				
	3.1.3.1 Application Software				
	3.1.3.2 System Software				
	3.1.3.3 Utility Software				
	3.2 Programming Language				
	3.2.1 Definition of Computer Programming				
	3.2.2 Types of Programming Languages				
	3.2.2.1 Machine Language				
	3.2.2.2 Assembly Language				
	3.2.2.2.1 Assembler				
	3.2.2.3 High Level Language				
	3.2.2.3.1 Translators- Interpreters and				
	Compilers				
	3.2.2.4 Comparison of Programming languages				
	3.2.2.5 Examples of Programming Languages-				
	BASIC, C, C++, JAVA				
	3.3 Computer Programmer				
	3.3.1 Definition				
	3.3.2 Skills required to become a programmer				
	3.4 Generations of Programming Languages				
	3.4.1 First Generation Languages				
	3.4.2 Second Generation Languages				
	3.4.3 Third Generation Languages				
	3.4.4 Fourth Generation Languages				
	3.4.5 Fifth Generation Languages				
	3.5 Applicability of Programming Languages in the field				
	of Engineering				
	3.6 Computer Program Development Life Cycle				
	3.6.1 Defining the Problem				
	3.6.2 Designing the Program				
	3.6.3 Coding the Program				
	3.6.4 Testing and Debugging the Program				
	3.6.5 Documenting the Program				
	3.6.6 Implementation and Maintaining the Program				
	3.7 Errors in Computer Programming				
	3.7.1 Definition				
	3.7.2 Types of Errors				
	3.7.2.1 Syntax errors				

				1	
	3.7.2.2 Semantic errors				
	3.7.2.3 Logical errors				
	3.7.3 Error Handling Mechanisms				
UNIT IV	4. ALGORITHMS	13	10	CO3,	2,
	4.1 Introduction			CO4	3
	4.2 Characteristics of Algorithm				
	4.2.1 Input				
	4.2.2 Output				
	4.2.3 Definiteness				
	4.2.4 Finiteness				
	4.3 Control structures of Algorithm				
	4.3.1 Sequence				
	4.3.2 Branching (Selection)				
	4.3.3 Loop (Repetition)				
	4.4 Advantages of algorithm				
	4.5 How to write algorithms				
	4.5.1 Define your algorithms input				
	4.5.2 Define the variables				
	4.5.3 Outline the algorithms operation				
	4.5.4 Output the results of algorithms operation				
UNIT V	5. FLOWCHARTS	12	11	CO3,	2,
	5.1 Definition			CO4	3
	5.2 Advantages of flowchart				
	5.3 Standard symbols for drawing Flowchart				
	5.4 Assignment Symbol				
	5.5 Mathematical Operators				
	5.6 Relational Operators				
	5.7 Logical Operators				
	5.8 Selection control Statements				
	5.9 Loop control Statements				
	5.10 Goto				
	1	38	64		

8. COURSE DELIVERY:

The course will be delivered through laboratory instructions and exercises.

9. SPECIFICATION TABLE FOR PRACTICAL PLAN

Unit No	Unit	Number of Practical Hours	Marks
I	1. INTRODUCTION TO BASIC ELECTRONICS	20	10
	1.1 Basic Electronic components		
	1.2 Power Electronic Devices: Identification & Functions		
	1.3 Breadboard		
II	2. INTRODUCTION TO BASIC ELECTRONICS	12	10
	EQUIPMENT'S		
	2.1 Digital Multimeter		
	2.2 Power supply		
	2.3 Function Generators		
	2.4 Cathode Ray Oscilloscope (CRO)		
	2.5 Soldering and Desoldering		10
III	3. COMPUTER PROGRAMMING	11	10
	3.1 Computer Terminology		
	3.2 Programming Language		
	3.3 Computer Programmer		
	3.4 Generations of Programming Languages		
	3.5 Applicability of Programming Languages in the field of		
	Engineering		
	3.6 Computer Program Development Life Cycle		
	3.7 Errors in Computer Programming		
IV	4. ALGORITHMS	10	10
	4.1 Introduction		
	4.2 Characteristics of Algorithm		
	4.3 Control structures of Algorithm		
	4.4 Advantages of algorithm		
	4.5 How to write algorithms		
V	5. FLOWCHARTS	11	10
	5.1 Definition		
	5.2 Advantages of flowchart		
	5.3 Standard symbols for drawing Flowchart		
	5.4 Assignment Symbol		
	5.5 Mathematical Operators		
	5.6 Relational Operators		
	5.7 Logical Operators		
	5.8 Selection control Statements		
	5.9 Loop control Statements		
	5.10 Goto		
	Total	64	50

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Electronics)						
1	Identification of various passive components like Resistor, potentiometer, LDR.						
	Capacitor& inductor. Calculate the value of standard resistors using colour codes.						
	Calculate the values of capacitors.						
2.	Identification of the terminals of Semiconductor Diode, Zener Diode, LED, PNP/NPN						
	Transistor, IC 7404 & IC 7805.						
3.	Identification of the terminals of power electronic devices such as SCR, DIAC,						
	TRIAC, UJT and PUT.						
4.	Measurement of resistance, Capacitance & Continuity Check using digital multimeter.						
5.	Continuity check of Rows and Columns of the Breadboard and mounting of various						
	components on the Breadboard.						
6.	Measurement of voltage using digital multimeter.						
7.	Measurement of current using digital multimeter.						
8.	Testing of various terminals of Relays.						
9.	Connecting the power supply to the given circuit and adjusting the voltage to a given						
	value of DC voltage using the coarse and fine adjustment knobs.						
10.	Identify Various sections of power supply.						
11.	Observation of Sine wave, Square Wave, Triangular Waveforms on the CRO and						
	measure amplitude and frequency of the waveforms.						
12.	Practice of Soldering and Desoldering on old and available PCBs.						

No	Practical (Comp.)						
1	Algorithm & Flowchart to find the sum of two numbers						
2.	Algorithm & Flowchart to convert temperature from:						
	(i) Celsius to Fahrenheit (ii) Fahrenheit to Celsius						
3.	Algorithm & Flowchart to find Area and Perimeter of:						
	(i) Square (ii) Rectangle (iii) Circle (iv) Triangle						
4.	Algorithm & Flowchart to find:						
	(i) Simple Interest (ii) Compound Interest						
5.	Algorithm & Flowchart to Swap Two Numbers:						
	(i) using Temporary Variable (ii) without using temporary variable						
6.	Algorithm & Flowchart to find the:						
	(i) smallest of two numbers (ii) largest of two numbers (iii) largest of three numbers						
7.	Algorithm & Flowchart to find Even number between:						
	(i) 1 to 50 (ii) 1 to n where n is a positive integer.						
8.	Algorithm & Flowchart to find Odd number between:						
	(i) 1 to 50 (ii) 1 to n where n is a positive integer						
9.	Algorithm & Flowchart to find sum of series:						
	(i) $1+2+3++n$ (ii) $1-X+X^2-X^3X^n$						
10.	Algorithm & Flowchart to find sum and average of given series of numbers						
11.	Algorithm & Flowchart to find Roots of Quadratic Equations AX ² +BX+C=0						
12.	Algorithm & Flowchart to find Factorial of number n (n!=1 x 2 x 3 xn)						

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	N. N. Bhargava	Basic Electronics and Linear Circuits	Tata McGraw Hill
2	Chattopadhyay D.	Electronics Fundamentals and	New Age
		Applications	International
3	Ajay Mittal, Stewart	Fundamentals of Programming	Pearson
	Venit et al,	Languages	
4	Anil Bikas Chaudhuri	The Art of Programming Through	Firewall Media
		Flowcharts and Algorithms	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	K. Lal Kishore	Electronic Measurements and	Pearson India
		Instrumentation	
2	Dipali P.	Fundamentals of Programming	Technical Publications
	Baviskar,	Languages	Pune
3	Luciano Manelli	Understanding Algorithms and	CreateSpace Independent
		Flowcharts: Step by Step Explanations	Publishing Platform
		of Simple and	
		Fundamentals of Modern Information	
		Technology	

Internet and Web Resources

S. No.	Description
1	https://www.dummies.com/programming/electronics/basic-electronic-components-
	and-what-they-do/
2	https://www.electronicshub.org/basic-electronic-components/
3	https://www.tutorialspoint.com/programming_methodologies/programming_methodol
	ogies_flowchart_elements.htm

Videos and Multimedia Tutorials

S. No.	Description
1	https://www.tutorialspoint.com/data_structure/what_is_an_algorithm.asp

(GC205) ENGINEERING MATERIALS

1. AIM

To provide knowledge to students in the area of materials for engineering applications.

2. RATIONALE:

To know about the properties and applications of engineering materials like metals, non-metals, conductor, semi-conductor, Insulating, Magnetic and Construction Materials. This information will be useful in studying other subjects of engineering.

3. PRE-REQUISITES:

Knowledge of engineering chemistry.

4. TEACHING AND EXAMINATION SCHEME

Semester	II									
Course co	de &	Pe	Periods/Week Total Examination Scheme							
course t	itle		(in ho	urs)	Credits	Theory Practic Marks Mark			Total Marks	
(GC20	5)	L	T	P	С	TH	TM	TW	PR/OR	
ENGINEE MATERI		3	ł		3	75	25			100

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

CO1: Understand different types of materials

CO2: Identify different types of materials

CO3: Explain the composition of materials and its properties

CO4: Classify material based on application

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowled ge	Proble m Analy sis	Design and Devlopm ent of Solutions	Engg. Tools, Experime ntatn& Testing	Engg. Practices for Society,Sustaina bility & Environment	Project Managem ent	Life -long Learning
CO1	3	2	0	0	0	0	1
CO2	3	2	1	0	0	0	1
CO3	2	3	2	1	1	0	0
CO4	2	2	3	2	1	0	1

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	2
CO2	1	2
CO3	2	2
CO4	2	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
Unit			M	Th	CO	Level
				r		S
1 INTRODU	CTION TO ENGINEERI	NG MATERIALS	08	04	CO1	
					CO4	
1.1 Classificati	on of Materials: Metal and	Non-metal, Ferrous Metal & Non-				
ferrous Metals,	Differences between Metal	ls & non-metals				
1.2 Properties of Materials:(Note: Properties to be explained with relevant						
examples.)						
1.2.1 Physical 1	properties – Melting point, l	Freezing point, Boiling point,				

Density, Linear co-efficient of expansion, Thermal conductivity, Electrical resistivity				
1.2.2 Mechanical properties – Strength, Elasticity, Plasticity, Ductility, Malleability, Toughness, Brittleness, Hardness, Fatigue, Creep.				
1.2.3 Electrical properties – Resistivity, conductivity, Temperature coefficient of resistance, dielectric strength, Thermo electricity, super conductivity				
1.2.4 Magnetic properties – permeability and coercive force				
1.2.5 Chemical properties - Corrosion resistance and chemical composition	-			
2 FERROUS & NON-FERROUS METALS & ITS ALLOYS		12	CO1 CO2 CO3 CO4	
2.1 FERROUS ALLOYS:				
 2.1.1 Low carbon steel, medium carbon steel, High carbon steel, their carbon percentage, properties & uses. 2.1.2 Cast iron: Grey cast iron, white cast iron, their properties & uses 2.1.3 Alloy steels: Constituents of alloy steels such as Phosphorous, Sulphur, Silicon, Manganese and their effect on properties of materials. 2.1.4 Stainless steel, Nickel-chromium-molybdenum steel, its properties & uses. 2.1.5 Tool steel – composition, HSS, properties & uses 				
2.2 NON-FERROUS METALS & ALLOYS:				
2.2.1 Aluminium – Properties & uses 2.2.2 Aluminium alloys – constituents of alloy & their effect on properties of metal				
2.2.3 Properties & uses of Duralumin, Y-alloy and Al-si alloy				
2.2.4 Copper – Properties & uses.2.2.5 Copper alloys – Constituents of alloy & their effect on properties of metal				
2.2.6 Properties & uses of Copper – Zinc alloys such as Muntz metal, manganese, bronze, copper-Tin alloys such as Bronze, copper aluminium alloys such as aluminium bronzes.				
2.2.7 Lead and its hazard to the environment 3 NON-METALLIC MATERIALS	18	10	CO1	
			CO2	

			CO3 CO4
3.1 CONSTRUCTION MATERIALS			
3.1.1 Classification of rocks, common building stones and their applications.			
3.1.2 Cement: Types of cement, composition and applications			
3.1.3 Bricks: Composition, properties, Classification, Special bricks-			
Refractory and fly-ash bricks and uses			
3.1.4 Clay: Types, products of clay- tiles and pipes			
3.1.5 Sand- sources – river, crushed aggregates, applications			
3.2 ENGINEERING CERAMICS	-		
3.2.1 Refractories: Desirable properties, Properties and Applications of Fire			
clay and Silica Refractory, Difference between acid, basic & neutral			
refractories			
3.2.2 Glass: Properties & uses of soda glass, Borosilicate glass and fibre glass			
3.2.3 Glass wool: Composition, properties & uses			
3.2.4 Timber: Common varieties of timber, uses of wood products, veneer and			
plywood			
3.2.5 Natural & Synthetic abrasive materials: Introduction, Properties & uses			
4 CONDUCTOR, SEMI CONDUCTOR, AND INSULATING	16	12	CO1
MATERIALS		12	CO2
4.1 Classification of Materials as conductor, Semiconductor and Insulating	-		
materials			CO3
4.2 Conductor Material:	1		CO4
4.2.1 High conductivity materials: Copper, Aluminium, Carbon, Silver, Lead			
& Tungsten, their properties as conducting materials and applications.			
4.2.2 High resistivity materials: Nichrome, constantan, manganin and their			
applications			
4.3 Insulating Materials: Introduction and Characteristics of Good Insulating	1		
materials			
4.3.1 Solid Insulating materials- Wood, paper, rubber, mica, glass fibre,			
porcelain, PVC, Resins, their characteristics as insulating materials and			
applications			
4.4 Semiconductor Materials: Silicon & Germanium, their specifications as	†		
semiconductor material and uses.			
Unit 5 MAGNETIC & COMPOSITE MATERIALS	15	10	CO1
			CO2
5.1 Magnetic Materials: Classification as Diamagnetic, Paramagnetic,			
Ferromagnetic, List of these materials and their applications			CO3
5.2 Composite Materials: Metal matrix, ceramic matrix and polymer matrix	1		CO4
composites, types of reinforcement materials and their applications			
5.3 Paints & Lubricants:]		
5.3.1 Classification: oil based and polymer based paints			
5.3.2 Constituents of Paints – resin, binder, pigment, additives, solvents			
5.3.3 Lubricants – Functions of lubricants, Types of Lubricants, Composition			
and Applications			
Total	75	48	

8. COURSE DELIVERY:

The course will be delivered through lectures and class room interactions.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit Name	Number of lectures (hrs)	Marks
1	Introduction to Engineering Materials	04	08
2	Ferrous & Non-Ferrous Metals & its alloys	12	18
3	Non-Metallic Materials	10	18
4	Conductor, Semiconductor, & Insulating Materials	12	16
5	Magnetic & Composite Materials	10	15
		48	75

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.S. Khurmi	Material Science	S. Chand
2	R. Srinivasan	Engineering Materials &	Tata McGrow Hill
		Metallurgy	
3	TTTI Madras	Electrical Engineering Materials	
4	S. K. Hajra		Indian book distribution
	Choudhury	Material Science and Processes	
5	P. C. Varghese	Building Materials	PHI
6	J. B. Gupta	Electrical and Electronic	Katson
	J. B. Gupta	Engineering Materials	

SEMESTER III

(CC 304) Basic Electrical Engineering

1. AIM

This course will enable the students to understand the basic concepts and principles of AC Circuits, Transformers and Motors.

2. COURSE OBJECTIVES:

- 1.To understand basic concepts in Electrical Engineering
- 2. To understand working & use of Transformer, DC & AC motors
- 3. To understand importance of safety precautions and use of protective devices

3. PRE-REQUISITES:NIL

4. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	Periods/Week		Total	Examination Scheme				
course title	(i	n hou	rs)	Credits	Theory Marks		•		Total Marks
(CC 304)	L	T	P	С	TH	TM	TW	PR/OR	
BASIC	3	-	2	5	75	25	25	-	125
ELECTRICAL									
ENGINEERING									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain terms related to ac waveform ,operating principle and functions of parts of transformer, motors, need for earthing and operation of protective devices
- 2. Describe the procedure for starting and speed control of different motors
- 3. Differentiate between types of motors, types of earthing, protective devices, star and delta connection
- 4. Test &compute parameters of transformers

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society, Sustai nability & Environment	Project Management	Life -long Learning
CO1	3	2					1
CO2	3	2		3		3	1
CO3	2	2	3	3	2	3	1
CO4	2	2			2		1

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	
CO2	2	
CO3	2	
CO4	2	

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	C	Le
		r	O	vel
				S
1 AC CIRCUITS	15	9	CO	L1,
			1,3	3
1.1Sinusoidal AC voltage waveform. Definition and numerical Values of,				
average value, RMS value, form factor, peak factor, frequency of				
Sinusoidal quantities.				
Principle of single phase alternator				
1.2 Three-phase circuits. Concept of phase sequence, balanced system and				
unbalanced system Relation between line and phase quantities for star and				
delta connections.				
1.3Concept & definition of Real, reactive and apparent power in three-				
phase system.				
2 TRANSFORMER	15	10	CO	L1,
			1,4	4

2.1 Principle of operation and basic construction (Core & Shell type) of a single phase transformer. EMF equation, Calculations of Rated Currents & Voltages & Turns using emf equation				
2.2 Losses in transformer (Hysteresis, Eddy Current & copper loss, their brief description), efficiency and voltage regulation. Rating of transformer ,Applications of transformer				
3 DC MOTORS	15	10	CO 1,2 ,3	L1, 2,3
3.1 Working principle of DC motors, main parts of DC motor and their functions(Yoke ,pole core ,pole shoe, armature core, armature winding ,Commutator& Brushes), classification of DC motors (shunt, series and compound and their applications).				
3.2 Necessity of starter, methods of reversal of direction of rotation of DC shunt and series motor.				
3.3 Speed Equation , Armature resistance control & Field resistance control method for DC shunt Motor				
4 AC MOTORS	15	10	CO 1,2 ,3	L1, 2,3
4.1 Principleof three phase induction motor, main parts, classification (squirrel cage & Slip ring), torque-slip characteristics and application (only diagram).				
4.2 Necessity of starter, Starters - Direct On Line starter, star delta starter(Manual) and autotransformer starter(Maual), (w.r.t. circuit diagram, working and application). Method of reversal of direction of rotation.				
 4.3 Working principle and application of Single phase induction motor (split phase only) Universal motor Stepper motor (Variable reluctance type & permanent Magnet type.) 				
5 EARTHING & PROTECTIVE DEVICES	15	09	CO 1,3	L1,
5.1 Electric shock, precautions against shock. Necessity of earthing, types of earthing- equipment earthing& system earthing (definitions only). Types of earthing electrodes- Pipe and Plate. Methods of reducing earth resistance.				
5.2 Fuse- Definition, Types of Fuses- Rewirable fuse, HRC fuse & Cartridge fuse. Rating for fuse such as Voltage ratings, Current ratings, Breaking capacity (Rupture capacity) & Minimum fusing current. MCB- Principle of operation and application. ELCB- Current operated type. Principle of operation and application.				
Total	75	48		

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	AC CIRCUITS	09	15
2	TRANSFORMER	10	15
3	DC MOTORS	10	15
4	AC MOTORS	10	15
5	EARTHING & PROTECTIVE DEVICES	09	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 8)	Marks
1.	Connection of single transformer & Measure its Voltages, Currents,	
	Voltage Regulation & Efficiency	
2.	Verify relationship between phase & line quantities in star connected load	
3.	Speed control of DC motor	
4.	Starting of DC shunt motor and reversal of direction of rotation	
5.	Starting of three phase induction motor using star delta starter	
6.	Verify relationship between phase & line quantities in Delta connected load	
7.	Study of MCB & ELCB (Current Operated)	
8.	Study of stepper motors	
9.	Study of servo motors	
10.	Study of universal motors	
11.	Study of rotor resistance starter for starting of Slip ring induction	
	motor.	
12.	Checking of Ceiling fan using series test lamp	
13.	Measurement of voltages in a single phase system(between phase and	
	neutral, phase and earth and neutral and earth)	
	Total	25
No	Class room Assignments	Marks
1	Atleast 02 assignments.	
No	Tutorial Exercise	Marks
1	NIL	
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	B.L.Theraja	Electrical Technology (Vol I and	S. Chand
		Vol II)	
2	V.K Mehta	Principles of Electrical Engineering	S. Chand
		& Electronics	
3	J.B.Gupta	Fundamentals of Electrical	S.K. Kataria& sons
		Engineering	

(EX302) PROGRAMMING CONSTRUCTS FOR ELECTRONIC DEVICES

1. AIM

- 1. To introduce students to programming skills through C language.
- 2. To enable students to develop logical skills to write C program
- 3. To train students to compile, debug and execute C program.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Understand programming of C language.
- 2. Develop logical skills to write C program
- 3. Use compiler software to compile, debug and execute C program.

3. PRE-REQUISITES:

Students should know

- 1. Simple basics of computer hardware
- 2. Operating of a computer.

4. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Peri	Periods/Week		Total	Examination Scheme				
course title	(iı	n houi	rs)	Credits	Theory Marks		- 1		Total Marks
(EX302)	L	T	P	С	TH	TM	TW	PR/OR	
Programming	-	-	4	4	-	-	25	50	75
Constructs for									
Electronic Devices									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the program statement and draw flow chart.
- 2. Develop basic programming skills and write programs using C.
- 3. Analyze the program statement and build programs using features of C.
- 4. Compile, debug and execute programs of C.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimenta tn& Testing	Engg. Practices for Society, Sust ainability & Environmen t	Project Managemen t	Life -long Learning
CO1	0	2	1	0	0	3	0
CO2	3	3	1	2	2	3	0
CO3	3	3	1	2	3	3	2
CO4	0	1	0	2	0	3	0

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	2	1
CO3	3	1
CO4	2	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	P	CO	Le
				vel
				S
1 Introduction to C	12	10	col	L1 L2
1.1 Overview of C:				112
Brief history of C language, Features of C language, Application of C language in electronics, Structure of C language				
1.2 Flow chart:				
Definition and uses, symbol used in flow chart- flow line, terminal, input/output, processing, decision, on-page connector, off-page connector,				
predefined process/function, Simple examples of flow chart.				
2 Basic elements of C programming	18	14	co2	L1
			co4	L2
2.1 Lexical elements of C:				
C character set, Variables, Constants, Data types, delimiters, reserved words				
2.2 Operators and Expressions in C:				
Arithmetic operators, expressions, relational operators, logical operators, increment/decrement operators, bitwise data operators				
2.3 C pre-processor:				

File inclusion (usage only)				
2.4 Input/Output in C				
Different types of input functions and output functions, conversion				
specification, formatted input/output function				
3 Control statements of C programming	18	14	co2	L3
			co4	L4
3.1 Decision control statements :				
if else, nested if				
3.2 Loops:				
for loop, break and continue statement, nested for loop, while loop, do-				
while loop				
3.3 Case control statement:				
switch-case-default				
3.4 Functions:				
Call by value, call by reference, recursive function				
4 Data types	21	18	co3	L3
			co4	L4
4.1 Arrays:				
Declaration of Arrays, one dimensional Array, two dimensional Array				
4.2 Strings:				
Declaration of String, string library functions				
4.3 Pointers:				
Declaration of Pointers, pointer operators, Basic pointer arithmetic				
5 Structures	06	08	co3	L3
			co4	L4
5.1 Declaration of structure, array of structure, structure within a structure.				
Total	75	64		

8. COURSE DELIVERY: The Course will be delivered through practicals, laboratory interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of Practicals	Marks
1	Introduction to C		10	12
2	Basic elements of C programming		14	18
3	Control statements of C programming		14	18
4	Data types		18	21
5	Structures		08	06
		Total	64	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (any 8 to 10)

No	Practical	Marks
1.	Program on flow chart	
2.	program on input and output	
3.	program on calculations using operators and expressions	
4.	program on controls statements-if, switch	
5.	Program on loop	
6.	program on function	
7.	program on pointers	
8.	program on arrays	
9.	Program on strings	
10.	program on structures	
	Total	25
No	Tutorial Exercise	Marks
1	To be decided as per requirement by subject teacher.	
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Yeshwant Kanetkar	Let Us C	Jones and Bartlett
			publishera, USA
2	J. Jayasri	The 'C' Language Trainer with C	New Age
		Graphics and C++	International (P)
			LTD.
3	Anil Bikas	The Art of Programming Through	FIREWALL
	Chaudhuri	Flowcharts & Algorithms	MEDIA, New Delhi
4	Luciano Mandli	Understanding Algorithm and Flow	Create Space
		Chart	Independent Pub

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	B. W. Kernigham, D. M.	The C programming language	
	Ritchie		
2	Byron gottfried	Programming with c- Schaum's	Tata McGraw
		outlines	Hill

(CC 308) BASIC ELECTRONICS ENGINEERING

1. AIM

To introduce students to semiconductor devices and their applications

2. COURSE OBJECTIVES:

The students will able to:

- 1. Explain the operation and characteristics of semiconductor devices
- 2. Build and test electronic circuits based on semiconductor devices

3. PRE-REQUISITES:

1. Students should have knowledge of basic principles and laws of physics.

4. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Periods/Week			Total		Examination Scheme			
course title	(iı	n hou	rs)	Credits	Theory Practical Marks Marks				
CC 308	L	T	P	С	TH	TM	TW	PR/OR	
Basic Electronics Engineering	3	-	2	5	75	25	25	50	175

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the operation and characteristics of semiconductor devices
- 2. Apply the knowledge of semiconductor devices to build electronic circuits
- 3. Analyze capacitor filter and semiconductor device based electronic circuits
- 4. Select an appropriate semiconductor device based circuit for a specific application

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	1	1	3	2	0	2
CO2	3	2	1	3	2	2	0
CO3	3	3	2	2	3	0	2
CO4	2	2	2	1	3	0	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	3	3
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	CO	Lev
		r		els
1 Introduction to Semiconductors	10		CO1	L1,
				L2
1.1 Classification of solids as conductors, semiconductors and		1		
insulators				
1.2 Types of semiconductors-Intrinsic and Extrinsic semiconductors,		4		
structure of intrinsic semiconductor				
Extrinsic semiconductor- definition of doping, pentavalent and				
trivalent impurity. P-type and N-type, structure, majority and				
minority carriers				
2 Semiconductor diode	18		CO1,	L1,
			CO2,	L2
			CO3,	
			CO4	
2.1 P-N junction and depletion region. forward bias, reverse bias, V-		4		
I characteristics, Important diode ratings,				
2.2 Rectifiers- Half wave rectifier, Centre tap Full wave rectifier,		4		L3

Full wave bridge rectifier, (working, input, output waveforms,				
Vdc,PIV), comparison between rectifiers 2.3 Filters- definition of ripple factor, Types of filters, C filter		2		L3
operation(ripple factor, waveforms), numerical on c filter		2		L3
3 Zener Diode	12		CO1, CO2, CO3,	L1, L2
3.1 Construction, operation, forward and reverse characteristics, breakdown mechanism, Important zener diode ratings, comparison with semiconductor diode		4		
3.2 Zener diode as voltage regulator, numerical on variable supply and variable load.		3		L3, L4
4 Bipolar Junction Transistor	20		CO1, CO2, CO3	L1, L2
4.1 Schematic of NPN and PNP transistor, working of NPN transistor.		2		
4.2 Transistor configurations-CE, CB and CC configurations		2		
4.3 Transistor input and output characteristics in CB configuration, Transistor input and output characteristics in CE configuration, Alpha, Beta and the relation between them		6		
4.4 leakage currents- concept of ICBO, ICEO, numerical on leakage currents		2		
4.5 Comparison between transistor configurations		1		
4.6 Transistor as a switch		1		
5 Field Effect Transistors	15		CO1	L1, L2
5.1 JFET: Structure, operation, characteristics of n and p- channel JFET,		3		
5.2 important JFET parameters (rd, μ and gm, no derivations), comparison with BJT		2		
5.3 MOSFET: Structure, operation and characteristics of n-channel and p- channel enhancement type MOSFET.		3		
5.4 Structure, operation and characteristics of n -channel and p-channel depletion type MOSFET		3		
5.5 Comparison between JFET and MOSFET		1		
Total	75	48	-	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises & case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of lectures	Marks
1	Introduction to Semiconductors	5	10
2	Semiconductor diode	10	18
3	Zener Diode	7	12
4	Bipolar Junction Transistor	14	20
5	Field Effect Transistors	12	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Practical Title	
1	Plot VI characteristics of semiconductor diode	
2	Plot VI characteristics of zener diode	
3	Assemble and test zener diode as a voltage regulator	
4	Assemble and test half wave rectifier with and without capacitor filter	
5	Assemble and test bridge full wave rectifier with and without capacitor filter	
6	Plot input characteristics of transistor in CB configuration	
7	Plot output characteristics of transistor in CB configuration	
8	Plot input characteristics of transistor in CE configuration	
9	Plot output characteristics of transistor in CE configuration	
10	Assemble and test circuit of transistor as a switch	
11	Plot VI characteristics of JFET	
	Total	25
No	Class room Assignments	Marks
1	Atleast 02 assignments.	
No	Tutorial Exercise	Marks
1	NIL	
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Bhargava & others	Basic Electronics and Linear	TATA McGRAW
		circuits	HILL
2	Robert L. Boylestad	Electronic Devices and Circuit	Prentice – Hall India
		Theory	
3	V.K. Mehta	Principles of Electronics	S. CHAND
		Engineering	

(CC 309) DIGITAL ELECTRONICS

1. AIM

- 1. The students should be able to explain about digital number systems and logic circuits.
- 2. The student should be able to solve logic function minimization.
- 3. The students should be able to differentiate between combinational and sequential circuits such as decoders, encoders, multiplexers, demultiplexers, flipflops, counters, registers

2. COURSE OBJECTIVES:

The students need to learn basic concepts of digital circuits and system which leads to design of complex digital system such as microprocessors.

The students need to know combinational and sequential circuits using digital logic fundamentals.

This is the first course by which students get exposure to digital electronics world.

The students will able to:

- 1. To understand various number representations and conversion between different representation in digital electronic circuits.
- 2. To introduce the students to various logic gates, SOP,, POS and their minimization techniques.
- 3. To analyze logic processes and implementation of logical operations using combinational logic circuits.
 - 4. To understand, analyze and design sequential circuits

3. PRE-REQUISITES:

Students should know

- 1. Decimal number systems
- 2. Knowledge of semiconductors

4. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course cod	e &	Peri	ods/V	Veek	Total		Examination Scheme			
course tit	le	(iı	ı houi	rs)	Credits	Credits Theory Marks		•		Total Marks
(CC 309)	L	T	P	С	TH	TM	TW	PR/OR	
Digital Electroni		03	-	02	05	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand and relate the knowledge of Number Systems in Digital Applications
- 2. Build different Sequential and Combinational Circuits
- 3 Simplify logical problems using digital circuits
- 4. Develop, test and troubleshoot basic digital electronics circuits

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	igg. ools, perimatin&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	2	3	3	0	0	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	0	3
CO4	3	3	3	3	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M =	Thr = Teaching	CO =	Course				
Marks	hours	Objectives					
Unit				M	Thr	CO	Levels
1 Number	System			14	09	CO1	L1,L2
1.1 Digital	and Analog Signals	·					
Definiti	on of digital and ar	nalog signals,Co	mparison				
between An	nalog and Digital sign	nals					
1.2 Numbe	r System:- Decimal,	Binary, Hexadeo	eimal.				L3
Introdu	ection to Decimal,	Binary and Hex	adecimal				
Number Sy	stems. Counting in	each system. Co	onversion				
from one system to other.							
1.3 Codes:- introduction and importance of Codes.BCD						L3	
code, GRAY code conversion of Gray to Binary, Binary							
to Gray, Bo	CD to binary and B	Binary to BCD. I	Represent				

and its importance. 1.4 Binary Addition (upto 4 bits), 1's complement of a Binary number, 2's complement of a Binary number. Binary Subtraction using 2's complement method. Addition of signed decimal numbers. 2. Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra ,Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, Full Subtractors:- Half subtractor circuit using logic gates, Full Subtractors:- Half subtractor circuit using logic gates, Full Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexers(1 to 4), Encoder (4 to 2), Decoder(2 to 4), BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	Decimal Numbers in BCD and Gray codes. ASCII code				
L3 1.4 Binary Addition (upto 4 bits), 1's complement of a Binary number. 2's complement of a Binary number. Binary number. 2's complement of a Binary number. Binary Subtraction using 2's complement method. Addition of signed decimal numbers. 2.1 Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebra is laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractors using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4), BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of slocked RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	· ·				
Binary number, 2's complement of a Binary number. Binary Subtraction using 2's complement method. Addition of signed decimal numbers. 2 Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of sF/F using NAND gates, . 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	and its importance.				
Binary number, 2's complement of a Binary number. Binary Subtraction using 2's complement method. Addition of signed decimal numbers. 2 Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of sF/F using NAND gates, . 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	1.4 Dinary Addition (yets 4 hits) 1's complement of a				1.2
Binary Subtraction using 2's complement method. Addition of signed decimal numbers. 2 Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					L3
Addition of signed decimal numbers. 2 Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra ,Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractors using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of Clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked Jk F/F, Excitation table of Jk flip flop 3.5 Race around condition in Jk F/F. Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
2.Combinational Circuits 2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Juality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
2.1 Logic Gates:- Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3 Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, Full subtractor using logic gates. 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4), BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of clocked R5 F/F using NAND gates 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked R5 F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Symbol, Truth Tables, Operation of Clocked D F/F 3.6 Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Symbol, Expression and Truth Tables of Basic gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form). 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of F/F. 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2		19	12	CO1,CO2,CO3	L1,L2
gates(AND,OR,NOT) and Combinational gates(NOR,NAND,EXOR,EXNOR). 2. Boolean Algebra:- DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	2.1 Logic Gates:-				
gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra: DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, 1.2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	Symbol, Expression and Truth Tables of Basic				
gates(NOR,NAND,EXOR,EXNOR). 2.2 Boolean Algebra: DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, 1.2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	gates(AND,OR,NOT) and Combinational				
2.2 Boolean Algebra: DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation of Clocked D F/F 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked D F/F 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of TF/F, 4 Registers And Counters 1 L3					
DeMorgan's Theorems, Laws of Boolean Algebra Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
,Duality Theorem, 2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates: Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F, Excitation table of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
2.3Simplification of Boolean Expressions using Boolean Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Algebraic laws and by using K-Maps Techniques (upto 4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					1.2
4 Variables in SOP Form), 2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates , Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	1				L3
2.4 Universal Gates:- Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Implementation of NOT,OR,AND,EXOR gates using NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
NOR and NAND Gates 2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
2.5 Adders:- Half Adder circuit using logic gates, Full Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6 Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Adder circuit using logic gates, block diagram of 4 bit parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	NOR and NAND Gates				
parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	2.5 Adders:- Half Adder circuit using logic gates, Full				
parallel adder. Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	Adder circuit using logic gates, block diagram of 4 bit				
Subtractors:- Half subtractor circuit using logic gates, Full Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Subtractor using logic gates 2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	1 -				
2.6Combinational circuits:- Block diagram and Implementation using basic gates:- Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Block diagram and Implementation using basic gates: Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Multiplexers(4 to 1), Demultiplexer(1 to 4), Encoder (4 to 2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
2), Decoder(2 to 4). BCD to 7 segment Decoder driver (Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
(Common Cathode). 3 Flipflops 12 08 CO1,CO2, L1, L2 3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of T F/F, 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of Truth Tables, Operation of Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2		10	00	GO1 GO2	T 1
3.1 Definition of FlipFlop. Applications. Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates., 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	3 Fliptiops	12	08	CO1,CO2,	
Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					L2
Symbol, Truth Tables, Operation and timing diagrams of RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	3.1 Definition of FlipFlop. Applications.				
RS F/F using NAND gates. , 3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	Symbol, Truth Tables, Operation and timing diagrams of				
3.2 Symbol, Truth Tables, Operation and timing diagrams of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
of clocked RS F/F using NAND Gates, Concept of Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
Asynchronous inputs(Preset and Clear) 3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
3.3 Symbol, Truth Tables, Operation of Clocked D F/F 3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
3.4 Symbol, Truth Tables, Operation of Clocked JK F/F, Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	• • • • • • • • • • • • • • • • • • • •				
Excitation table of JK flip flop 3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
3.5 Race around condition in JK F/F. Symbol, Truth Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	± ±				
Tables, Operation of JK master slave F/F. 3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
3.6 Symbol, Truth Tables, Operation of T F/F, 4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2	· ·				
4 Registers And Counters 19 12 CO1,CO2,CO4 L1,L2					
4.1 Registers: Definition of Shift Registers, Applications		19	12	CO1,CO2,CO4	L1,L2
	4.1 Registers: Definition of Shift Registers, Applications				

of Registers				
Symbols and Logic block diagram of SISO,SIPO,PISO				
and PIPO Registers,				
4.2 Serial IN Serial Out Register (size of the register 4				
bits)				
Logic Diagram and Operation of SISO Register using				
negative edge triggered D F/F along with the Truth Table				
and Timing diagrams				
4.3 Serial IN Parallel Out Register (size of the register 4				
bits)				
Logic Diagram and Operation of SIPO Register using				
negative edge triggered D F/F along with the Truth Table				
and Timing diagrams.				
4.4 Parallel IN Serial Out Register (size of the register 4				
bits)				
Logic Diagram and Operation of PISO Register using				
negative edge triggered D F/F along with the Truth Table				
and Timing diagrams				
4.5 Parallel In Parallel Out Register (size of the register 4				
bits)				
Logic Diagram and Operation of PISO Register using				
negative edge triggered D F/F along with the Truth Table				
and Timing diagrams . Concept of Shift right, Shift left,				
Ring Counter.				
4.6 Counters: Introduction to counters, Modulus of				
counters. Count sequence, No of Flip Flops required for				
Specified counters				
4.7 Asynchronous Counters:- 4 bit UP counter using JK				
Flip Flops only and 4 bit DOWN counter using JK Flip				
Flops only.				
4.8 Synchronous Counters:- 4 bit UP counter using JK				
Flip Flops only and 4 bit DOWN counter using JK Flip				
Flops only, Decade (Mod 10) using JK Flip Flops only.				
4.9 Design of Synchronous counters(upto 4 bit) using				L4
only JK Flip Flops				124
5 DAC and ADC and Memories	11	7	CO1,CO4	L1,L2
5.1 Definitions, Types of DAC and ADC(no description)	11	1	CO1,CO4	11,12
, Applications		1		
5.2 Binary Ladder Network for DAC:- Logic circuit and		4		L3
operation. Simple numerical problems		4		L3
Successive Approximation ADC .:- Logic circuit and				
operation. Simple numerical problems.		2		
5.3 Memories: Introduction, Semiconductor memories and		2		
its types –ROM,RAM,PROM, EPROM,EPROM(only				
definition and applications)	7.	40		
m . 1	75	48		
Total				

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Number systems	09	14
2	Combinational circuits	12	19
3	Flipflops	08	12
4	Registers and counters	12	19
5	DAC and ADC	07	11
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Perform any 8)	Marks
1.	Verification of Logic gates and Demorgan's Theorems	
2.	Universal gates (NAND and NOR)	
3.	Verification of Boolean Expression	
4.	Half Adder and Full Adder using logic gates	
5.	Half Subtractor and Full Subtractor using logic gates	
6.	MUX and D-MUX	
7.	RS F/F, D F/F and JK F/F	
8.	Assemble and Test Binary Counter/Decade counter	
9.	Assemble and test DAC using DAC0808	
10.	Assemble and test ADC using ADC0808	
	Total	25
•••		
No	Class room Assignments	
	Atleast 02 assignments	
No	Tutorial Exercise	Marks
1	As decided by subject teacher as per the requirement	
•••	Tota	al

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.P.Jain,	Modern Digital Electronics	Fourth Edition, Tata
			McGraw-Hill
			Education.
2	Malvino & Leach,	Digital Principles and Applications	Seventh Edition,
			McGraw-Hill
			Education

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Thomas L. Floyd,	Digital Fundamentals	10th Edition, Pearson
			Education Inc, 2011
2	. By A.K. Maini,	Digital Electronics: Principles and	Wiley India
		Integrated Circuits	Publications

(EX301) Communication Engineering

1. AIM

- i) To introduce students to the basics of communication systems
- ii) To impart in depth knowledge about of AM& FM
- iii) To enable the students to understand the operation of AM & FM receiver
- iv) To introduce students to various wave propagation techniques.

2. COURSE OBJECTIVES:

The students will able to:

- i) Understand concept of modulation and demodulation of AM / FM.
- ii) Understand the operation of AM/FM transmitter and receiver.
- iii) Understand the concept of radio wave propagation.

3. PRE-REQUISITES:

Basic Electronics Engineering.

4. TEACHING AND EXAMINATION SCHEME

Semester III									
Course code &	Per	iods/V	Veek	Total	Total Examination Scheme				
course title	(i)	n hou	rs)	Credits	The Ma	•	1	actical Iarks	Total Marks
(EX301)	L	T	P	C	TH	TM	TW	PR/OR	
Communication Engineering	03	-	02	05	75	25	25	-	125

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand different modulation and demodulation techniques used in analog communication systems.
- 2. Classify types of noise and various frequency bands in communication system
- 3 Apply the concept of modulation and demodulation in AM and FM transmitters and receivers.
- 4. Compare various types of antennas & wave propagation techniques

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	2	1	1	-	1	2
CO2	3	-	2	-	-	2	2
CO3	3	2	2	2	1	2	3
CO4	2	-	2	_	1	_	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	3	1
CO3	3	1
CO4	3	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M =	Thr = Teaching hours	CO = Course Objectives				
Marks	_	-				
Unit			M	Th	CO	Level
				r		S
1 Basics of	communication Engg		12	07	CO1	L1 &
					&	L2
					CO2	
1.1 Block d	liagram of communication	system				
1.2 Frequen	cy bands used in communi	cation system				
1.3 Noise : 1	Definition & Classification	of noise				
• Exte	• External Noise: Atmospheric noise, Industrial Noise &					
Extr	raterrestrial noise					
• Inter	rnal Noise: Thermal Noise	, Shot Noise & Transit time Noise				
• Defi	inition of signal to noise ra	tio & noise figure.				
1.4 Need for	r modulation& types of mo	odulation				
• Anal	log Modulation techniques	s: AM, FM, PM Definitions,				
• Puls	• Pulse Modulation techniques: Definition & waveforms of PAM,					
	M & PPM.					
• Digi	tal Modulation techniques	:Definition & waveforms of				
_	K,FSK & PSK					
2 Amplitud	le Modulation		21	14	CO1	L1&

			& CO2	L2
2.1 Amplitude Modulation: Waveforms, Derivation of mathematical expression of AM signal.			002	
2.2 Derivation of Modulation Index equation using AM waveform, Frequency Spectrum of AM, Power and current relations, Simple numericals				L3
2.3 Block diagram of AM Transmitter-Low level and high level				
2.4 Detection of AM Waves. Envelope detector				
2.5 Single sideband AM :Advantages of SSB				
 Advantages of SSB Suppression of carrier using Balanced modulator(no derivation) Suppression of unwanted sideband using filter method Block diagram and operation of ISB 				
3 Angle Modulation	18	12	CO1 & CO3	L1 & L2
3.1 Angle Modulation : Definition & types of Angle Modulation				
 3.2 Frequency Modulation : Waveforms, Mathematical expression of FM (no derivation) Modulation index & maximum frequency deviation Frequency spectrum of FM using expanded form of FM equation and important observations 				L3
Bandwidth of FM wave ,Carson's rule 2.2 No. 1			-	
3.3 Narrow band & Wide band FM ,Pre-emphasis and De-emphasis 3.4 Generation of FM using varactor diode modulator, Detection of FM wave using Balanced slope detector				
3.5 Phase Modulation : Definition and mathematical expression (No derivation)				
3.6 Comparison between AM,FM & PM				L4
4 Receivers	12	07	CO1 &C O3	L1 & L2
4.1 Characteristics of Receivers : Sensitivity, Selectivity & fidelity (definitions)				
 4.2 AM Receivers : TRF receiver : Block diagram, Operation & limitations Superheterodyne Receiver: Block diagram & operation 				
 4.3 FM Receiver: Block diagram & operation Stereo FM multiplex transmitter and receiver: Block diagram, operation & frequency spectrum 				
5 Antennas& Wave Propagation	12	08	CO4	L1 & L2
5.1 Antennas:				

 Antenna parameters:-definitions of antenna gain, antenna resistance, beam width and polarization. Construction and radiation pattern of Yagi-Uda & parabolic reflector (horn feed) Antennas. 			
 5.2 Wave Propagation Ground Wave propagation Sky Wave Propagation: Ionosphere & its effect, definitions of virtual height, critical frequency, skip distance, fading, maximum usable frequency. Space Wave propagation 			L4
Total	75	48	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Basics of communication Engg	07	12
2	Amplitude Modulation	14	21
3	Angle Modulation	12	18
4	Receivers	07	12
5	Antennas& Wave Propagation	08	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Perform Amplitude Modulation on trainer kit. (Observe and draw the waveform of AM & calculate modulation index of AM)	
2.	Perform Amplitude Demodulation on trainer kit.(Observe and draw the input waveform and output waveform)	
3.	Test the performance of SSB SC AM Modulation on trainer kit.	
4.	Test the performance of SSB SC AM Demodulation on trainer kit	
5.	Test the performance of DSB-SC AM modulation on trainer kit.	
6.	Perform frequency modulation on trainer kit.(Observe and draw the waveform of FM)	
7.	Perform frequency demodulation on trainer kit.(Observe and draw the input waveform and output waveform)	

8.	Test the performance of superheterodyne receiver on trainer kit.(Observe	
	the wave forms at various points in AM receiver)	
9.	Field visit to All India Radio Transmitter Station (Optional)	
	Total	25
No	Class room Assignments	Marks
1	Atleast 02 assignments	
No	Tutorial Exercise	Marks
1		
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Kennedy,	Electronic &Communication	Tata McGraw Hill, India,
	George	System	ISBN:978-00-746-3682-4
	and Bernard		
	Davis		
2	Roddy Collen	Electronic communication	Pearson Education
			ISBN:81-297-746-0106-5
3	Mithal G.K	Radio Engineering	Khanna Publishers,
			NewDelhi
			ISBN:978-8174090140

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	R P Singh & S	Communication Systems	Tata McGraw Hill, India
	D Sapre		ISBN:13-978-0-07-063454-1
	_		
2	Taub's,	Principles of Communication	Tata McGraw Hill, India
	Herbert	Systems	ISBN:0-07-462456-3

(CC303) Circuits & Networks

1. AIM

- 1 To enable the students understand the facts, concepts & principles of electrical & electronics engineering circuits.
- 2. To enable them to analyze the electrical & electronic circuits.
- 3 To help them build different RLC circuits with AC supply.
- 4 To introduce two port networks like filters

2. COURSE OBJECTIVES : The students will able to:

- 1. Verify different basic laws & theorems.
- 2. Analyze different DC &AC circuits.
- 3 Test electrical & electronic circuits.
- 1. PRE-REQUISITES: Students should know
 - 1 .Applied Physics
 - 2. Engg Mathamatics

4. TEACHING AND EXAMINATION SCHEME

Semester	III									
Course code & course title		_	iods/V n houi		Total Credits		Exam	nination	Scheme	
						The	•		actical larks	Total Marks
Circuit	S	L	T	P	С	TH	TM	TW	PR/OR	IVIAIKS
&Network (CC303		3	-	2	5	75	25	25	-	125

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1.Understand. network concepts, theorems & resonance
- 2. Interpret the response of different RLC circuits to AC supply.
- 3 .Apply various theorems to simplify resistive circuits.
- 4. Design basic electrical filters . .

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipli ne	Problem Analysis	Design and Devlop ment of	Engg. Tools, Experim	Engg. Practice s for Society, Sustaina	t3 &	Life - long Learnin g
CO1	3	3	2	2	0	2	2
CO2	3	3	3	3	0	2	3
CO3	3	3	3	3	0	3	3
CO4	3	3	3	3	0	2	2

Electronics Engineering CURRICULUM

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th r	C O	Le vel s
1 BASIC TERMINOLOGY	6	4	1	L1, L2
1.1 Definitions of circuit, network, voltage, current, power, mesh, loop,,node &branch, port.				
1.2 Definition of network elements Active & passive, Unilateral & bilateral, Linear & non linear, lumped& Distributed.				
1.3 Energy Source Voltage & Current Sources Concept of Ideal & practical energy source				
1.4 Series & Parallel equivalent expressions of resistors, capacitors & inductors.(No derivations), Simple numerical on it.				
2 NETWORK THEOREMS (RESISTIVE ONLY WITH DC SOURCE)	30	22	3	L1, L2, L3
2.1 Voltage& Current Divider theorem—Statement of theorem, simple numerical on it.				
2.2 Kirchhoff's voltage& current Laws-Stataement of laws & simple numerical on it.				
2.3 Concept of Mesh & Node analysis-Explanation of method & simple numerical(maximum 3 loops ,3 nodes)				L4
2.4 Superposition Theorem- Explanation of statement of theorem & simple numerical				
2.5 Thevenin's Theorem- Explanation of statement of theorem & simple numerical 2.6 Maximum Payar Transfer Theorem Explanation of statement of				
2.6 Maximum Power Transfer Theorem Explanation of statement of theorem & simple numerical, 2.7 Star Delta transformation - Explanation of conversion from star to				
2.7 Star Delta transformation - Explanation of conversion from star to delta & vice versa, simple numerical on it				

3 AC CIRCUITS	20	10	2,1	L1, L2, L3
 3.1 Response of basic R,L,C,RL, RC,RLC elements to AC signal. 3.2 Phasor diagrams of series RC & series RL circuits,Concept of impedance. 3.3 Simple problems to find impedance,VR,VC,VL, Phase angle in above circuits 3.4 Concept of series resonance Circuit .Graphical representation of resonance curve ,bandwidth ,half power frequencies. Problems based on Fr,Imax,F1,F2,Z.(Note:Resonance problems are of L4) 3.5 Concept of Q factor, Problems to calculate Q factor. 				
3.6 RC Integrater & Differentiater for sine & square wave input. 4 NETWORKS	10	6	3	L1, L2
4.1 Introduction & Applications: Two port networks: Symmetrical T & Pi networks 1.2 Characteristics of two port networks Characteristic invadence short				
4.2 Characteristics of two port network: Characteristic impedance, short circuit & open circuit impedance				
4.3 Derivations& Simple numerical on Zo, Zoc, Zsc (only for T type)				
5 FILTERS	9	6	4	L1, L2, L3, L4
5.1 Introduction of Filter circuits				
5.2 LPF, HPF,BPF, BRF (graphical interpretation), Constant k (LPF, HPF-T type only)				
5.3 Design formulae & numerical				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	BasicTerminology	4	6
2	Network Theorems(Resistive circuis with DC Source)	22	30
3	AC Circuits	10	20
4	Networks	6	10
5	Filters	6	9
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Verification of Ohms law and its application to series parallel Circuits	
2	Verification of KVL and KCL	
3	Verification of superposition theorem	
4	Verification of Thevenins theorem	
5	Verification of maximum power transfer theorem	
6	Study of RLC series resonance circuits	
7	RC Integrator and RC Differentiator	
8	Study of filters LPF &HPF, T & PI Type	
No	Class room Assignments	Marks
1	At-least two assignments	
2		
•••		
No	Tutorial Exercise	Marks
1	NIL	
2		
	Total	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Sudhakar	Circuits & Networks	McGrawHill
	­ammohan		Education
2	B.L.Theraja	S.Chand	
3	Royal Signals	Handbook of Line Communication	HMSO
4	B.R.Gupta	Network filters & Transmission	S.K.Kataria & Sons
	&V.Singhal	lines	
5	Schaum Series	Electrical Circuits	McGrawHill
			Education

SEMESTER IV

(EX 401) ELECTRONIC CIRCUITS

1. AIM

- 1. To introduce students to working of various types of electronic circuits using transistors.
- 2. To assemble and test the performance of such circuits.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Analyze the working of a given transistor based circuits.
- 2. Develop simple circuits using transistors.
- 3. Understand different types of feedback systems.

3. PRE-REQUISITES:

Students should know

- 1. Knowledge of semiconductor theory and devices specially working of bipolar junction transistor.
- 2. Basic principles of electronic and electrical circuits.

4. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Peri	ods/V	Veek	Total		Exam	inatior	Scheme	
course title	(iı	n houi	rs)	Credits	The	ory	Pra	ectical	Total
					Mai	rks	M	arks	Marks
(EX401)	L	T	P	C	TH	TM	TW	PR/OR	
ELECTRONIC	3		2	5	75	25	25	25	150
CIRCUITS	3	_	2	3	73	23	23	23	

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain working of different electronic circuits based on transistors and their applications.
- 2. Apply the knowledge of transistors to build transistor amplifier circuits and identify different power amplifiers.
- 3. Analyze different types of feedback systems.
- 4. Build and test transistor based electronic circuits.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustai nability & Environment	Project Management	Life -long Learning
CO1	3	1	1	2	0	0	1
CO2	3	1	2	2	1	1	2
CO3	1	2	0	1	0	0	0
CO4	3	2	3	3	1	3	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	1
CO2	3	2
CO3	1	1
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
	Unit		M	Th	CO	Levels
				r		
1 Transis	stor biasing techniques ar	nd amplifiers	21	15	CO1/	L1,L2
1.1 Transisto	or biasing techniques: need	and types (fixed & voltage			CO2/	
divider biasis	ng- comparison), Steps fo	r selection of Q point for			CO4	L4
fixed and vo	ltage divider biasing, simp	ole numerical on finding Q				
point(fixed a	nd voltage divider)					
1.2 Single	stage transistor CE amp	lifier- working, frequency				
response						
1.3 General	block diagram of multi-s	tage amplifier, necessity of				
multistage an	nplifiers					
1.4 Differen	t coupling methods- wor	king, frequency response,				
applications a	and					
comparison of	of:-					L3
> RC co	oupled					
Direc	t-coupled					
> Trans	former Coupled					

2 Feedback Circuits	21	12	CO1/	L1,L2
2.1 Concept of feedback, block diagram of feedback systems,			CO3/ CO4	
types of feedback, merits and limitations of negative feedback 2.2 feedback connections-Block diagram of voltage series.	_			
2.2 feedback connections-Block diagram of voltage series, voltage-shunt, current-series, current –shunt				
2.3 Derivation of input impedance, output impedance, voltage	1			L3
gain, stability factor (for voltage series), simple numerical on feedback				
2.4 Bandwidth of a voltage series amplifier(block diagram only)				
Feedback with & without bypass capacitor in single stage CE				
amplifier 2.5 Emitter follower circuit	_			
3 Power Amplifiers	12	9	CO1/	L1,L2
-			CO2/ CO4	,
3.1 Need for Power amplifier, Difference between Power and				
voltage amplifier				
3.2 single ended power amplifier				
3.3 Classification- A, B, AB; operation, comparison.				L3
3.4 Push pull, complimentary symmetry power amplifier (no analysis)				
4 Oscillators	12	06	CO1/	L1,L2
4.1 Principle of oscillations; Barkhausens criteria			CO3/ CO4	
4.2 Working of RC oscillators- phase shift and Wien Bridge.				L3
(numerical for frequency)				
4.3 Working of LC oscillators- Hartley, Colpitts and crystal				L3
oscillator (numerical for frequency)				
5 Multivibrators	09	06	CO1/ CO4	L1,L2
5.1 Multivibrator-operation of Astable (simple numerical on Ton				
and T _{off}), Bistable and Monostable (simple numerical on pulse				L3
width)type circuit, List of applications				
5.2 Schmitt trigger circuit	1			
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises & practical.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	Marks
1	Transistor biasing techniques and amplifiers		15	21
2	Feedback Circuits		12	21
3	Power Amplifiers		9	12
4	Oscillators		6	12
5	Multivibrators		6	9
		Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (Any 8)

No	Practical	Marks
1.	Assemble and test fixed bias circuit to determine Q point	
2	Assemble and test voltage divider bias circuit to determine Q point	
3	Assemble & Test a single stage CE amplifier without feedback	
4	Assemble & Test a single stage CE amplifier with feedback	
5	Test the performance of RC coupled amplifier	
6	Assemble and test Emitter follower	
7	Assemble and test performance of class A power amplifier	
8	Assemble and test the performance of Hartley oscillator	
9	Assemble and test the performance of Colpitts oscillator	
10	Assemble and test RC phase shift oscillator	
11	Assmeble and test performance of Bistable multivibrator	
12	Assmeble and test performance of Astable multivibrator	
13	Assmeble and test performance of Schmitt trigger circuit	
	Total	25

11. LEARNING RESOURCES

Text Books

S.	Author	Title of Books	Publishers
No.			
1	Bhargava & Gupta	Basic Electronics &Linear circuits	2 nd edition, McGraw Hill Education
2	Boylestad, Robert and Nashelsky Louis	Electronic Devices and circuit theory	11 th edition, Pearson India Education Services Pvt Ltd
3	Mottershead Allen	Electronic devices and circuits: introduction	1 st edition, Prentice Hall India Learning Private Limited

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	S Salivahanan	Electronic devices and circuits	4 th edition Tata
	N Sreshkumar		McGraw-Hill
2	B.L.Theraja	A Textbook of Electrical Technology	Latest, S Chand
	A.K.Theraja	Volume IV, Electronic Devices and	
		Circuits	

(EX 402) POWER ELECTRONICS

1. AIM

- 1. To understand basic concepts of Power Electronic devices.
- 2. To understand concepts of triggering circuits.
- 3. To understand the working of various converter circuits.

2. COURSE OBJECTIVES / RATIONALE:

This course will enable the students to understand the working of power electronic devices and converter circuits.

3. PRE-REQUISITES:

- 1. Basic knowledge of Electronic Devices.
- 2. Basic knowledge of Ac waveforms.

3. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Per	iods/V	Veek	Total		Exar	ninatior	1 Scheme	
course title	(i	in houi	rs)	Credits	Theory Practical Marks Marks		•		Total Marks
(EX402)	L	T	P	С	TH	TM	TW	PR/OR	
POWER	03	-	02	05	75	25	25	-	125
ELECTRONICS									

4. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain working of various power electronics devices and circuits, SCR triggering methods etc.
- 2. Demonstrate operation and applications of various power electronics circuits
- **3.** Distinguish between different types of rectifiers, converters, Choppers, Inverters etc.
- 4. Choose power electronic device for given industrial application

5. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society, Sustai nability & Environment	Project Management	Life -long Learning
CO1							2
CO2	2		3		3	1	2
CO3	1					2	2
CO4	2	2		2		3	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	
CO2	3	
CO3	3	2
CO4	3	2

6. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	CO	
1. POWER ELECTRONIC DEVICES	21	16	CO1	L1,2
1.1 Schematic, symbol, working and characteristic of SCR, DIAC, TRIAC,			CO2	,3
LASCR, UJT, PUT.			CO3	
1.2 Two transistor model of SCR, turn on-turn off characteristics of			CO4	
SCR,V-I characteristic of SCR				
Triggering methods: Voltage triggering, Gate triggering, dv/dt triggering,				
light triggering.				
1.3 Pulse triggering circuits using UJT & PUT				
1.4 Commutation: types & working of commutation(A,B,C,D,E and F type)			1	
(no waveforms)				
1.5 Protection of Power Electronic Device: Snubber circuit, gate protection			1	
and over current protection				
2. PHASE CONTROLLED CONVERTERS	15	06	CO1	L1,2
2.1 Working of half wave controlled converters with R, RL & RL with			CO2	,3,4
freewheeling diode. (input and output voltage waveforms only)			CO3	
			CO4	
2.2 Working of full wave Bridge controlled converter with R and RL load,			1	
Three phase half wave controlled converter with R load (input and output				
voltage waveforms only)				
3. CHOPPERS AND SWITCHING MODE REGULATORS	09	06	CO1	L1,2
			CO2	,3,4
3.1 Operation of Single thyristor chopper and two thyristor chopper.			CO3	
3.2 Circuit diagram and working of Buck and Boost regulators.			CO4	
4. INVERTERS ,UPS AND SMPS	15	08	CO1	
4.1 Definition, classification of inverters, Single phase half and full bridge			CO2	
inverter with R load, Series and parallel inverter.			CO3	
4.2Block diagram of UPS (on-line and off-line), Comparison between			CO4	
Online and Offline UPS, Block diagram of SMPS.				
5. AC CONTROLLERS AND CYCLOCONVERTERS	15	12	CO1	L1,2
			CO2	,3,4
5.1 Working of On-Off and Phase Controlled AC voltage controllers,			CO3	
single phase unidirectional and bidirectional AC Voltage controllers with R			CO4	
load (fully controlled).				
5.2 Principle of operation of cycloconverter, single phase to single phase st	•		1	
cycloconverter (F/2) (mid-point &bridge configuration)				
(circuit with waveforms), Applications of Cycloconverters (to list).				
Total	75	48	-	

7. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of	Marks
			lectures	
1	POWER ELECTRONIC DEVICES		16	21
2	PHASE CONTROLLED CONVERTORS		06	15
3	CHOPPERS AND SWITCHING MODE REGULATORS		06	09
4	INVERTERS ,UPS AND SMPS		08	15
5	AC CONTROLLERS AND CYCLOCONVERTERS		12	15
		Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (MIN 8)

No	Practical	Marks
1.	To study V-I characteristic of SCR	
2.	To study V-I characteristic of UJT	
3.	To study V-I characteristic of DIAC and TRIAC	
4	To study V-I characteristic of PUT	
5.	To study the Resistance triggering and Resistance Capacitance triggering of	
6.	To study pulse triggering using UJT and PUT firing circuits	
7.	To study of Half wave controlled rectifier using R load	
8.	To study of Full wave controlled rectifier using R load	
9.	To study of Series and Parallel inverter using SCR	
	Total	
No	Class room Assignments	Marks
1	Atleast 02 assignments	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers				
1	Mohammed H. Rashid	Power Electronics	Prentice Hall of India, New Delhi				
2	Bhimbhra P.S	Power Electronics	Khanna Publishers New Delhi				
3	PC Sen	Power Electronics	McGraw Hill Education Private				
			Limited,India				

(EX 403) 8051 Microcontroller

1. AIM:

To learn the architecture and features of the 8051 microcontroller and interface and program it for various applications.

2. COURSE OBJECTIVES:

Students will be able to:

- 1. Understand the architecture and features of 8051 microcontroller
- 2. Interface 8051 microcontroller systems to peripherals and I/O devices
- 3. Program 8051 microcontroller for various applications

3. PRE-REQUISITES:

Students should have the knowledge of:

- 1. Number systems
- 2. Digital electronics
- 3. Programming concepts

4. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Peri	iods/V	Veek	Total	l Examination Scheme				
course title	(iı	n hou	rs)	Credits	Theory Marks		•		Total Marks
(EX403)	L	T	P	C	TH	TM	TW	PR/OR	
8051 Microcontroller	3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, students will be able to:

- 1. Recall and explain the features of 8051 microcontroller and contrast between microcontrollers & microprocessors
- 2. Classify and interpret 8051 assembly language instructions
- 3. Develop, execute and debug assembly language programs for various applications
- 4. Interface 8051 microcontroller with external hardware for various applications

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Developm ent of	gg. ols, erim ion	Engg. Practices for Society, Sustainabi	Project Managem ent	Life -long Learning
CO1	2	2	3	0	0	0	3
CO2	0	0	3	0	0	0	3
CO3	0	3	3	3	3	3	3
CO4	2	3	3	2	3	3	3

Relationship: Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	0
CO2	2	0
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	C	Le
		r	O	vel
				S
1 Introduction to microcontrollers and 8051 microcontroller	15	09	C O1	L1, L2
1.1 Definition of embedded system, use of microcontrollers in embedded systems				
1.2 Difference between Harvard and Von Neumann architecture, microcontroller and microprocessor				
1.3 Advantages of microcontroller-based systems				
1.4 Architecture of 8051, it's pin functions, clock and oscillator				
1.5 Memory organization of 8051 – RAM, ROM, SFRs, flags; connections to external memory				
1.6 Ports of 8051 – registers, I/O configuration, features				
2 8051 additional built-in hardware and control	18	11	C 01	L1, L2
2.1 Timers/Counters – registers, modes of operation, configuration				

2.2 Interrupts – types (external & internal), priority, registers,				
configuration, interrupt-handling, interrupt service routine, ISR vector				
addresses				
2.3 Serial I/O – registers, configuration, serial data transfer operation				
3 Assembly language instructions for 8051 microcontroller	12	08	C	L1,
, , , , , , , , , , , , , , , , , , ,			02	L2
3.1 Addressing modes				
3.2 Assembly language instructions – data move, arithmetic, logical,				
branching, bit-wise				
4 Assembly language programming for 8051 microcontroller	18	12	C	L2,
Trissembly language programming for over interventioner	10		03	L3,
				L3,
4.1. Due anome vaing accombly language for the following:				L4
4.1 Programs using assembly language for the following:				
Data transfer between internal memory locations, data transfer to/from				
external memory, writing data to and reading data from ports				
Binary arithmetic (binary addition, subtraction, multiplication, division),				
BCD addition				
Logical operations				
Bit-wise operations				
Branching operations				
Subroutines, time delay subroutines, interrupt subroutines				
(Students to be examined on assembly language programs that can				
include a combination of any instructions.				
Minimum instruction set should be provided to students during the				
examination)				
5 Interfacing external hardware to 8051 microcontroller	12	08	C	L2,
			O4	L3
5.1 Hardware connections and programs to interface the following to the				
8051 microcontroller:				
LED and seven-segment display, LCD (Only interface diagram, no				
program for LCD)				
Switch and matrix keyboard				
Stepper motor				
IR sensor				
	75	40		
Total	75	48	1	

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies, laboratory practical, etc.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to microcontrollers and basics of 8051 microcontroller	09	15
2	8051 additional built-in hardware and control	11	18
3	Assembly language instructions for 8051 microcontroller	08	12
4	Assembly language programming for 8051 microcontroller	12	18
5	Interfacing external hardware to 8051 microcontroller	08	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Minimum FIVE - List 1	
1.	Program to add, subtract, multiply and divide two numbers	
2.	Program to add N binary numbers	
3.	Program to add BCD numbers	
4.	Program to transfer N data bytes within memory	
5.	Programs to implement logical instructions AND, OR, XOR, NOT	
6.	Program to implement logical instructions to swap and rotate data	
7.	Program to determine the largest/smallest binary number	
	List 2	
8.	Hardware interface of 8051 board to LEDs and assembly language program for blinking LEDs using bitwise instructions and software time delay routines	
9.	Hardware interface of 8051 board to LEDs and assembly language program for blinking LEDs using timer	
10.	Hardware interface of 8051 board to stepper motor and assembly language program to drive stepper motor	
11.	Hardware interface of 8051 board to LCD and assembly language program to display data on LCD	
	Total	25
No	Class room Assignments	Marks
	Atleast 02 assignments	
No	Tutorial Exercise	Marks
	To be decided by the subject teacher	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Muhammad Mazidi,	The 8051 Microcontroller and	Pearson
	Janice Mazidi, Colin	Embedded Systems	
	McKinlay	-	
2	Kenneth Ayala	The 8051 Microcontroller	Cengage Learning

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Myke Predko	Programming and customizing the	McGraw-Hill
		8051 Microcontroller	

(EX404) MAINTENANCE AND CIRCUIT SIMULATION USING COMPUTER AIDED DESIGN AND DRAFTING

1. AIM

The aim of this course is to develop required skills in the students so that they are able to:

- 1. Maintain the electronic circuits of various equipment
- 2. Design a Printed Circuit Board
- 3. Simulate a given circuit using EDA tools.

2. COURSE OBJECTIVES

The students will able to:

- 1. Develop skills to maintain basic electronic circuitry used in consumer goods segments
- 2. Design a Printed Circuit Board
- 3. Simulate electronic circuits using EDA tools.

3. PRE-REQUISITES:

- 1. Basic electronic circuits and their expected operation and output.
- 2. Basic soldering skill

4. TEACHING AND EXAMINATION SCHEME

Semester IV									
Course code &	Per	iods/W	Veek	Total		Exar	ninatior	Scheme	
course title	(i	n hour	:s)	Credits	The	ory	Practical		Total
					Mai	rks	M	larks	Marks
(EX 404)	L	T	P	C	TH	TM	TW	PR/OR	
MAINTENANCE	-	-	4	4	-	-	50	50	100
AND CIRCUIT									
SIMULATION									
USING CADD									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Test various electronic components
- 2. Use test & measurement equipment to find faults and maintain electronic circuits
- 3. Use EDA tools for designing a Printed Circuit Board
- 4. Use EDA tools for design, simulation and analysis of electronic circuits.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Leaming
CO1	2	2	1	2	0	0	0
CO2	3	3	1	3	0	0	0
CO3	2	0	3	1	2	0	2
CO4	2	2	2	0	0	0	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	0
CO2	3	1
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives				
Unit		<u> </u>	M	Th r	C 0	Le vel
1 70 4	CEL 4 C			1.4	1.2	S
1. Testing of	f Electronic Components			14	1,2	L1, 2,3
1.1 Standard	values and ratings of resist	tors and capacitors				
1.2 Reading of	of datasheets (IC 741, 555,	723)				
	1 1	d testing of resistors, capacitors, rs, relays, transformers, crystals				
1.4 Testing of	f active components- Diod	es, BJTs, JFETs, MOSFET's, SCR,				
DIAC,TR	CIAC, Displays using LED	and Opto electronics components,				
ICs						
2. Testing an	nd Maintenance of Electr	conic Circuits (Use multimeter)		10	1,2	L1, 2,3

2.1 Measurement of A.C. and D.C. voltage			
2.2 Continuity test of PCB track, wiring, switch etc.			
2.3 Inspection of solder joints, defects of soldered joints, defects of			
soldered joints, use of soldering gun, desoldering tools and rework			
station.			
2.4 Maintenance of any two home appliances			
3. PCB Design	18	3,4	L1, 2,3 ,4
3.1 Prepare components for soldering, soldering and de-soldering techniques.			
3.2 Exposure to computer aided PCB making (layout from given schematic)			
3.3 Design of PCB (any electronic circuit) using the automated layout.			
3.4 Concept of machine soldering, SMD soldering (could be imparted though online videos)			
4. Circuit building and debugging using EDA tools	11	3,4	L1, 2,3
4.1 Introduction to EDA tools and need for the same			
4.2 Simulation of simple R/RC/RLC networks			
4.3 Simulate a power supply circuit for specified I,V,P rating			
4.4 Simulation of summer/ averaging)/ comparator/ zero crossing detector/			
Schmitt trigger/ integrator/differentiator using opamps			
5. Circuit simulation and documentation using EDA tools	11	3,4	L1, 2,3
5.1 Simulation of an astable multivibrator			
5.2 Simulation of a RC amplifier			
5.3 Simulation of an oscillator			
5.4 Simulation of a controller based circuit for specified application			
5.5 Prepare documentation i.e circuit diagram, bill of material, and			
specification table for any of the simulated circuit.			
5.6 Drafting and modification of piping and instrumentation diagrams. (AutoCAD 3D plant may be used)			
Total	 64		

NOTE 1: For units 3,4 and 5, the student may use software tools like Orcad, Eagle ,TINA, Matlab, Labview, Autocad(P&ID), Automation Studio, Multisim, Proteus or any other suitable suite.

NOTE 2: The practical examination for CADD (50) will be based on the simulations carried out using EDA tools.

Term work marks (50) may be distributed for performance in testing electronic components and fabricating the PCB.

8. COURSE DELIVERY:

The course will be delivered through lab sessions, study videos, group interactions, exercises and case studies.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number of	Marks
No		lectures	
1	Testing of Electronic Components	14	
2	Testing and Maintenance of Electronic Circuits	10	
3	PCB Design	18	
4	Circuit building and debugging using EDA tools	09	
5	Circuit simulation and documentation using EDA tools	13	
	Total	64	

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Hours
1.	Explore datasheet of any three electronics components/analog/ Digital IC's.	04
2	Testing of passive components- Cold testing of resistors, capacitors, switches, fuses, connectors, inductors, relays, transformers, crystal	04
3	Testing of active components- Diodes, BJTs, JFETs, MOSFET's, SCR, DIAC,TRIAC	04
4	Testing of Displays using LED and Opto electronics components, ICs	02
5	To test continuity of PCB tracks, identify solder defects and rectify faults where possible	02
6	Maintenance/repair (if possible) of any two home appliances	08
7	Study of soldering and de-soldering techniques	02
8	Study of any computer aided PCB making (layout from given schematic)	08
9	Design of a PCB of any electronic circuit	08
	The following circuits may be simulated using any suitable EDA tool	0
10	Introduction to EDA tools and need for simulation	02
	Simulation of simple R/RC/RLC networks	
11	Simulate a power supply circuit for specified I,V,P rating	01
12	Simulation of a summer/ averaging/ comparator/ zero crossing detector/ Schmitt trigger / integrator/ differentiator using opamps	06
13	Simulation of an astable multivibrator	02
14	Simulation of a RC amplifier	02
15	Simulation of an oscillator	02
16	Simulation of a controller based circuit for specified application	03
17	Prepare documentation i.e circuit diagram, bill of material, and specification table for any of the simulated circuit.	02
18	Use AutoCAD 3D plant to draft and modify piping and instrumentation diagrams.	02
	TOTAL HOURS	64

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Singh K. Sudeep	Troubleshooting and Maintenance of	Katson Book, New
1		Electronics Equipment	Delhi, Reprint 2014
	Khandpur R. S	Troubleshooting Electronic Equipment:	Tata McGraw-Hill
2	_	Includes Repair and Maintenance	Education, New
		_	Delhi, India

(EX 405) Linear Integrated Circuit

1. AIM: To introduce students to working and applications of different Linear ICs.

2. COURSE OBJECTIVES

The students will able to:

- 1. Analyse the working of a given OPAMP based circuits.
- 2. Develop simple circuits using Linear ICs.

PRE-REQUISITES

Students should have the knowledge of:

- 1. Working of basic electronic Circuits.
- 2. Use of electronic equipment like Multimeter, CRO and function generator.

4. TEACHING AND EXAMINATION SCHEME

Semester IV Course code &	Periods/Week			Total	Examination Scheme				
course title	(iı	n houi	rs)	Credits		Theory Practical		Total Marks	
(EX 405)	L	T	P	С	TH	TM	TW	PR/OR	
Linear Integrated Circuit	3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the parameters of various IC's and working of application circuits.
- 2. Apply knowledge of IC's to build op-amp, 555 timer and regulator based circuits.
- 3. Analyze op-amp, 555 timer and regulator based circuits.
- 4. Compare and select appropriate IC based circuit for specific application.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	2	2	1	0	0	3
CO2	3	2	1	2	0	1	2
CO3	3	3	2	2	1	1	2
CO4	2	2	2	1	1	1	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	3	1
CO3	3	1
CO4	3	1

Note:- IC Pin diagrams should not be asked in theory examination

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	CO	Level
1Introduction to operational amplifiers	12	8	CO1	L1,L
				2
1.1 Integrated circuit –List of IC Classification List of IC Packages.				
1.2Advantages of IC over discrete components				
1.3 Op-amp—Block diagram and function of each block				
1.4 Symbol and equivalent circuit of op-amp Pin configuration of				
IC741.				
1.5 Characteristics of ideal and practical Op-amp.				
1.6 Op-amp Parameters(only definition)- I/p offset voltage, I/p offset				
current, I/p bias current, o/p offset voltage, input impedance, output				
impedance, bandwidth, CMRR, slew rate.				
2 Op-amp configuration	9	6	CO1	L1,L
			,CO	2

			2	
2.1 Concept of Negative feedback			 -	
2.2 Voltage series feedback amplifier- block diagram, circuit diagram,				
expression for voltage gain. (No derivation)				
2.3 Voltage shunt feedback amplifier- block diagram, circuit diagram,				
expression for voltage gain. (No derivation)				
2.4 Numerical problems based on voltage gain equation				L3
2.11 valuetiear problems based on voltage gain equation				LS
3 Applications of Op-Amp	21	12	CO1	L1,L
- 1-pp-1-010010 01 0 p 1-111.p		1	CO2	2
3.1 Inverting Op-amp as summing, scaling, averaging amplifier			CO ₃	
3.2 Subtractor			CO4	
3.3 Voltage to current convertor (with grounded load only)			7	
3.4 Current to voltage convertor				
3.5 Integrator			+	
3.6 Differentiator			+	
3.7 Voltage comparators: Non-inverting with positive and negative			-	
reference				
3.8 Clippers: Positive with positive and negative reference			-	
3.9 Clampers: Non-inverting with positive reference			-	
4.0 Waveform generators and Filters	15	10	CO1	L1,L
4.0 Waveform generators and Pinters	13	10	CO2	2
4.1 Op-amp Wein bridge oscillator			CO3	L4
4.2 Op-amp as Astablemultivibrator			CO4	
4.3 Triangular waveform generator.(Using 4.2)				
4.4 Concepts of active filters, comparison of active & passive filters				
4.5 Butter worth low pass filter (1st order only)				
4.6 Butter worth high pass filter (1st order only)			-	
4.7 Simple numerical problems on above filters.				L3
The sample numerical processing on access mission				LU
5 Special function ICs	18	12	CO1	L1,
			CO ₂	L2
5.1 Block diagram of IC 555 and its pin configuration/ functionality			CO ₃	
5.2 IC555 as Astablemultivibrator			CO4	L4
5.3 IC555 as Monostablemultivibrator				
5.4 Numerical problems (no derivations)				L3
5.5 Voltage regulators performance parameters of a regulator – load &			-	
line regulation and ripple rejection				
5.6 Salient features of three pin regulators, IC78XX series and IC79XX			1	
series fixed voltage regulators.				
5.7 Adjustable Positive voltage regulator using LM317: Circuit diagram,				
working, Output voltage equation (No derivation)				
5.8 VCO IC 566 block diagram and list of applications				
Total	75	48	+_	
Total	13	10	_1	l

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to operational amplifiers	8	12
2	Op-amp configuration	6	9
3	Applications of Op-Amp	12	21
4	Waveform generators and Filters	10	15
5	Special function ICs	12	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks				
1.	Determine the on one negrotors					
	Determine the op-amp parameters					
2.	Determine the gain of Inverting and Non-inverting amplifier using op-amp					
	and compare it with theoretical gain.					
3.	Verify the operation of adder and subtractor circuit.					
4.	Verify the working of active integrator and differentiator circuits.					
5.	Assemble and test V to I converter.					
6.	Verify the working of Comparator					
7.	Assemble and test Clipper circuit.					
8.	Assemble and test Clamper circuit.					
9.	Assemble and test first order filter.					
10.	Assemble and test astablemultivibrator using OPAMP					
11.	Assemble and test a multivibrator circuit using IC 555.					
12.	Assemble and test a IC fixed voltage regulator					
13	Assemble and test an Adjustable positive voltage regulator					
14	Test a VCO.					
	Total	25				
No	Class room Assignments	Marks				
1	Atleast 02 assignments					

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	RamakantGayakwad	Op-Amps and Linear Integrated	Pearson Education
		Circuit	
2	K.R. Botkar	Integrated Circuit	Khanna

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	David A.Bell	Op-amp & Linear ICs	Prentice Hall of
			India
2	Dr.Y.	Linear Integrated Circuits &	ISTE
	Venkataramani	Applications	

(EX406) Electronic Measurement and Instrumentation

- 1. AIM:-Provide knowledge of measurements and measuring instruments and also to gain knowledge of various sensors for different physical parameters.
- 2. COURSE OBJECTIVES: To explain basic concepts and definitions in measurement systems and to identify various parameters measurable in electronics instrumentation.

The students will able to:

- 1. Employ appropriate instruments to measure a given set of parameters.
- 2. Deep understanding about blocks in various instruments used in practicals.
- 3. Identify various sensors that will be useful in measuring different parameters in industry
- 3. PRE-REQUISITES: --

4. TEACHING AND EXAMINATION SCHEME

Semester	IV									
Course code	&	Peri	ods/V	Veek	Total	Examination Scheme				
course titl	e	(iı	n houi	rs)	Credits	The	ory	Pra	actical	Total
						Mai	Marks Marks		[arks	Marks
(EX 406)		L	T	P	C	TH	TM	TW	PR/OR	
Electronic	c	3	-	2	5	75	25	25	-	150
Measurement	and									
Instrumenta	tion									

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the working of analog and digital instruments and transducers
- 2. Classify different types of errors in measurements
- 3.Use appropriate instrument/bridges for measurement and testing of electronic circuits
- 4. Compare and select appropriate transducer/ instrument for specific application

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	2	3	0	0	2	3
CO2	3	2	2	2	0	2	3
CO3	3	2	2	2	0	2	3
CO4	2	3	3	3	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives]		
Unit	M	Th	C	Le
		r	O	vel
				S
1 Basics of Measuring Instruments	9	6	1,2	1,2
1.1 Static Characteristics- Accuracy, Resolution (only Definitions)				
1.2 Dynamic characteristics- Speed of response, Lag, Fidelity				
1.3 Error: Systematic, Limiting Errors, numerical on error				
calculation, systematic and limiting errors.				
1.4 Construction and working of PMMC movement, Block Diagram of				
Analog Multimeter, Digital Multimeter.				
2 Generators, Bridges and Display	24	15	3	1,2
2.1 Oscilloscope – Block Diagram of CRT and CRO, Types of CRO- Dual				
trace, DSO				
2.2 Block Diagram of Function Generator				
2.3 Block Diagram of Basic Spectrum Analyzer				
2.4Bridges: Wheatstone, Maxwells, Schering, Weins Bridge, along with				3
numerical for each type of bridge.				
2.5 Digital Display- working of LED and LCD				
3 Instrumentation System and Transducers	18	12	1	1,2
3.1 Block Diagram of Instrumentation System and their functions				

3.2 Transducer - Characteristics, classification(Active and Passive,				
Analog and Digital)				
2.2D - intime. Translation Detection to Ctrain Committee 1 and				
3.3Resistive Transducer – Potentiometer, Strain Gauge(Bonded and				
Semiconductor), RTD,Thermistor. 3.4 Inductive Transducer: LVDT				
3.5 Capacitive Transducer – Varying of distance, area, permittivity				
3.6Piezoelectric Transducer – Principle and material used.				
3.7 Optical Transducer: Construction and characteristics of LDR, Photodiode, phototransistor				
3.8 Digital Transducer: construction and working of Shaft Encoders				
4 Applications of Transducers	15	8	4	1,2 ,3
4.1 Displacement Measurement – Linear and angular displacement using				
Resistive, Capacitive and Inductive Transducer				
4.2 Angular Speed Measurement – Photoelectric pickup, magnetic pick up				
4.3 Pressure Measurement – Diaphragm with strain gauge				
4.4 Level Measurement - Float operated resistive method				
4.5 Flow Measurement : Turbine Meter				
5 Application of Instrumentation Systems	9	8	4	1,2 ,3
5.1 signal conditioning – Need for Signal Conditioning, Block Diagram of AC and DC				
5.2 Block Diagram and applications of the following:				
Data Acquisition System				
Process Control				
• SCADA				
Total	75	48		

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of lectures	
1	Basics of Measuring Instruments		6	9
2	Instrumentation System and Transducers		15	24
3	Instrumentation System and Transducers		12	18
4	Applications of Transducers		9	15
5	Application of Instrumentation Systems		6	9
		Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Measurement of current, voltage and resistance using PMMC meter	
2	Measurement of current, voltage, frequency and time period using CRO	
3	Testing of Wheatstones Bridge	
4	Testing of Maxwells bridge	
5	Temperature measurement using RTD	
6	Displacement measurement using LVDT	
7	Weight measurement using strain gauge bridge	
8	speed measurement of motor using photo electric pickup	
9	Liquid level measurement	
10	study of light sensors, photo transducers, Piezo electric transducer	
	Total	25
	Class room Assignments	Marks
	At least 02 assignments to be given on relevant topics	
No	Tutorial Exercise	Marks
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Cooper	Electronic measurement and instrumentation	Prentice Hall
2	H. S. Kalsi,	Electronic measurement and instrumentation	McGraw Hill India
3	A.K. Sawhney,	Electrical & Electronic Measurement and Instrumentation	Khanna Publishers, Delhi

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Curtis Johnson,	Process Control Instrumentation technology	Pearson/Prentice Hall
2	Murty, D.V.S.,	Transducers and Instrumentation	Prentice Hall of India, New Delhi,
3	Doeblin,	measurement Systems: Application and Design	McGraw Hill India

SEMESTER V

(TR 501) Industrial Training

1. AIM

To expose & prepare the students for the Industrial work situation. This exposure and hands on experience will further enhance the prospects of student fraternity to be better placed on completion of their course.

2. COURSE OBJECTIVES:

The students will able to:

- i. Understand functions of various departments of the industry while working in the industry.
- ii. Observe & familiarize with features of raw materials, machines, tools, products & processes of the particular industry
- iii. Work in the team to develop teamwork, leadership & communication skills
- iv. Develop technical skills as well as soft skills

3. PRE-REQUISITES:

i) Basic Engineering Skills

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Per	Periods/Week			Examination Scheme				
course title	course title (in hours)		Credits	Theory Marks		Practical Marks		Total Marks	
(TR 501)	L	T	P	С	TH	TM	TW	PR/OR	
Industrial Training	-	-	0	0	-	-	-	-	Grade

08 Weeks

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the organizational set up & functions of various departments in the industry
- 2. Apply the knowledge gained in the institute to correlate with the actual processes in the industry &Compile relevant data in the form of a report.
- 3. Develop leadership, teamwork & communication skills while having hands on experience in the industry

4. Demonstrate consciousness towards safety & environment by adapting to the rules & regulations of Industry

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	2	1	2	2	3	3	3
CO2	3	3	2	3	3	3	3
CO3	1	2	2	2	3	3	3
CO4	1	2	1	2	3	3	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	3
CO2	3	3
CO3	3	3
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

- 1.1 Students are required to study and have hands-on experience wherever possible in the following areas (depending on availability):
 - Company Profile
 - Organizational Structure
 - Company Product Range
 - Manufacturing Facilities Available /Services provided
 - Plant / Facility Layout
 - Operations / Production Processes
 - Production Planning and Control
 - Detail study of Latest Equipment/ Technologies Used
 - Stores Functions
 - Material Handling Systems/ Equipment
 - Quality Management Systems / Functions
 - Maintenance and Repair Practices
 - Safety Practices / Safety Equipment
 - Utilities
 - Logistics
 - Sales and Marketing

- Ethics, Statutory Rules and Regulations followed
- Product Design and Development
- Any other area specific to the Industry providing Training

8.TERM WORK & PRACTICALS

	Evaluation Scheme									
	T	PR/OR								
Attendance	Industrial	Institute	Training	Report	TOTAL					
Marks*	Mentor's	Mentor's	Report	Assessment	Marks					
	assessment	assessment		&						
	Marks	Marks		Seminar/Viva						
10	20	20	20	30	100					

^{* 01} mark shall be deducted for every Absence (with or without permission).

Daily Dairy:

The daily dairy should-be maintained in a book. It should reflect the day to day activities performed by the student (including task, men and materials involved). It should be counter signed by the Industry Mentor. It will become the basis for writing reports on the complete training.

Training Report

The training report should be submitted by the training students should include the following salient points- Certificate from institute, Certificate of training from company, detailed write up as per daily dairy, detailed drawings, working drawings, photographs, safety precautions, techniques for work minimization on site, organizational chart, Importance of project to the society, special methods/techniques/equipment should be separately high lightened, including environmental aspects. The report should be informative and technical, typed with double spacing on good quality bond paper and bound. Assessment of Training Report be based on Knowledge, Presentation, Quality of contents and Sketches.

Note:

- a. Student/s undergoing Industrial Training shall follow Rules and Regulations of the Industry.
- b. Industrial Training will generally be organized and conducted in accordance with Industrial Training Manual duly prescribed by the Board.

9. SUGGESTED SPECIFICATION TABLE WITH MARKS & HOURS

Unit No	Name of the Unit	Teaching Hours	Marks
1	PR/OR	08 weeks	30
2	TW		70
	Total	08 weeks	100

Note:

1. For Industrial training Grades will be awarded based on marks scored as follows:

2. TW and PR/OR shall be separate heads of passing. Student has to secure minimum Grade 'C' for passing.

(CC501) ENTREPRENEURSHIP DEVELOPMENT

1. AIM: Student will able to start his own venture with all fundamentals of business.

2. Rationale:

Today Entrepreneurship is given importance by the government to bring the youth of our country to overcome the problem of unemployment and bring them in the main stream of global business to strengthen Indian economy by Make in India philosophy. Government has announced various financial schemes for young youth and women to support them for setting up an enterprise. To fulfill this, youth are to be prepared for setting an enterprise. The students undergoing this course will be develop entrepreneurial traits and confidence within themselves and choose entrepreneurship as a career to brighten their future.

3. PRE-REQUISTES: Maths

4. TEACHING AND EXAMINATION SCHEME

Course Code	Periods/ Week (In Hours)		Ttal	Examination Scheme					
& Course Title			Credits	Theory Marks		Practical Marks		Total Marks	
CS501 Entrepreneurship	L	Т	P	C	-	-	PR/OR	TW	25
Development	-	-	2	2	-	-	-	25	25

Minimum passing % Practical 40%

4. COURSE OUTCOMES:

- 1. CO1 Classify the type of entrepreneur and enterprises
- 2. CO2 Understand basic financial terms and market research
- 3. CO3 Identify legal formalities required for Business.
- 4. CO4 Examine the project report for new enterprise.

5. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society,Sustain ability& Environment	Project Management	Life -long Leaming
CO1	0	1	2	0	2	3	3
CO2	3	2	2	0	3	0	0
CO3	0	1	2	0	0	0	2
CO4	3	2	2	0	2	0	2

Relationship: Low-1 Medium-2 High-3

Mapping Course Outcomes with Program specific Outcomes

	PSO1	PSO2
CO1	0	2
CO2	0	2
CO3	0	2
CO4	0	2

6. DETAILED COURSE CONTENTS

M=Marks Thr= Teaching hours CO – Course Outcomes		7		
Unit	M	Thr	СО	Level
	111	1111		Lever
1 Entrepreneurship Development	3	4	CO1	2
1.1 Introduction to Entrepreneurship Development (EDP): Need				
1.2 Entrepreneur definition, Types of Entrepreneur,				
Characteristics of entrepreneur and entrepreneurship				
1.3 Enterprises: Micro, Small and Medium Enterprises (MSME),				
Service industry, Manufacturing Industry, Franchises and Start				
up.				
	_		~~ ^	
2. Identification of business opportunity	5	6	CO2	3
2.1 business ideas-				
Exploring business ideas in terms of marketability, technical				
feasibility ,financing and authorities 2.2 Business terms –				
Clients, vendors market description, demand, supply, banking, & non-				
banking, financing companies, Loans of various types, GST, peers				
Promoters, Lenders, Consortium.				
110moters, Echaers, Consortain.				
3. Market Research	3	4	CO2	3
3.1 Data Collection –				
Data collection of Business idea such as Number of players,				
Total demand, Total supply,				
3.2 Analysis of Data-				
Analysis of data and projection of data with respect to various				
factor (such as GDP, Climate etc through case studies).				
3.3 Questionnaire –				
Preparing a questionnaire for business idea to assess business				
opportunity.				
4. Legal Aspect	8	10	CO3	3
4.1 Legal Financial Term-				
Know the various terms such as Resources, Assets, Liabilities,				
Advances, Depreciations, Investments, Fixed Capital, Working				
Capital (cash credit), Employee Cost, Miscellaneous Expense, Other				

Income, Profit & Loss Statement, Cash Flow Analysis, and Balance Sheet.				
4.2 Legal Aspects-				
Procedure for Registration with various government agencies GST, PAN, Slabs of Income Tax.				
4.3 Business Analyses				
1) Swot Analysis				
2) Break – Even Analysis				
3) Exit Plan				
5. Project Report	6	8	CO4	4
Need for project report, Importance of Project report,				
Scope of project report: Economic aspects, Technical aspects,				
Financial aspects, Managerial aspects, Production aspects.				
List the contents of a project report.				
Proforma of a project report which includes:-Introduction, Schemes,				
Profitability and Projections, Infrastructure, Break Even Point, Names				
and Addresses of suppliers, remarks.				
Project Profile.				
Project appraisal criteria:- Technical feasibility, Financial feasibility,				
Economic viability, Commercial viability, Managerial competency,				
Political and Labour considerations				
Total	25	32		

7. COURSE DELIVERY:

Videos / Lectures/ Practicals /Expert lectures / Industry visits

8. SPECIFICATION TABLE FOR PRACTICALS

Unit No.	Topic Sen		MARKS
1	Entrepreneurship Development	4	3
2	Identification of business opportunity	6	5
3	Market Research	4	3
4	Legal Aspect	10	8
5	Project Report	8	6
TOTAL	1	32	25

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICAL HOURS

No	Classroom Assignments	Marks
1.	Prepare a Case Study on leading enterprise	3
2.	Prepare a Case Study on small scale unit	3
3.	Prepare a report on various government schemes for startup.	4
4.	Prepare SWOT analysis for a new business idea.	5
5.	Prepare Project Report for a new business idea.	10

10. LEARNING RESOURCES

S.No.	Author	Title of Books	Publisher
1.	Sharadjawadekar, shobhadodlani,	Business entrepreneurship	Suvicharprakashanmandalpune,
2.	S.S. Khanna	Entrepreneurship development	S. Chand & Co. Ltd, New Delhi,
3.	Vasant Desai	Management of small Scale Industry in India	Himalaya Publishing House
4.	DilipSarwate	Entrepreneurial development Concepts and practices	Everest Publication House, Pune
5.	CB Gupta and P Srinivasan	Entrepreneurship Development	S. Chand and Sons, New Delhi

(EX 501) PROGRAMMABLE LOGIC CONTROLLERS (PLC)

1. AIM

1. To introduce students to PLC Hardware and programming concepts

2. COURSE OBJECTIVES / RATIONALE:

The students will able to:

- 1. To understand working of a PLC based System.
- 2. Write simple programs using ladder symbols and functional blocks.

3. PRE-REQUISITES:

Students should know

- 1. Working of Digital Circuits like Shift Registers, Counters, ADC and DAC.
- 2. Working of a Relay and Power electronic devices like Diac and Triac.

4. TEACHING AND EXAMINATION SCHEME

Semester	V									
Course code &		Periods/Week		Total	Examination Scheme					
course title		(in ho	urs)	Credits	Theory		Practical		Total
						Mai	rks	M	larks	Marks
(EX 50	01)	L	T	P	С	TH	TM	TW	PR/OR	
PROGRAM	MABLE	3	-	2	5	75	25	25	-	125
LOG	IC									
CONTROL	LLERS									
(PLC	C)									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe the hardware and I/O interface of PLC system.
- 2. Describe the procedures to commission and test PLCs in Industrial Automation Systems.
- 3. Develop and troubleshoot ladder programs for PLCs.
- 4. Design a simple automated system using PLCs.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society, Sust ainability & Environment	Project Management	Life -long Learning
CO1	2	0	1	0	0	2	2
CO2	2	2	1	2	2	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	1	1
CO3	2	1
CO4	2	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	CO	Levels
1. PLC HARDWARE	18	12	CO 1	L1,L2
1.1 Introduction: Definition, Features, Advantages, Applications				
1.2 Types of PLC : Single box & Modular, Small, Medium and Large				
PLC				
1.3 PLC system: General Block diagram,				
Internal architecture (block diagram): CPU, Buses & Memory.				
1.4 Input and output:				
Types of I/O signals – Analog, Digital and Discrete				
Types of I/O Connections – Sourcing and Sinking				
Input Units: DC input unit, AC input Unit and Analog input Unit.				
Output Units: Basic forms of Relay output unit, transistor output unit				
and Triac output unit.				
I/O Addressing: The general format of an I/O address.				
2. PLC Instructions and Functional Blocks	18	12	CO 3	L2
			CO 4	L3
2.1 PLC ladder diagram conventions, rules, standard IEC 1131-3				
symbols.				
2.2 Data handling instructions – Data movement (MOV), Data				
comparison (EQUAL, NOT EQUAL, LESS THAN, LESS THAN				
OR EQUAL, GREATER THAN, GREATER THAN OR EQUAL,				
MASKED COMPARISON FOR EQUAL, LIMIT TEST)				
2.3 Mathematical instructions(ADD, SUBTRACT, MULTIPLY,				

DIVIDE, SQUARE ROOT)				
2.4 SET and RESET Instructions				
2.5 Subroutine: call to subroutine, return to main program				
1 0				
2.6 Shift registers: Introduction, function, (SHIFT LEFT, SHIFT				
RIGHT, SHIFT 1 BIT AND 4 BIT AT A TIME).		-		
2.7 Internal Relays: Function of internal relays, Addressing of				
internal relays, battery backed relays, master control relay.				
3. TIMERS & COUNTERS	12	8	CO 3	L2
3. TIMERS & COUNTERS	12	8	CO 4	L2 L3
3.1 Timers: Function and list of applications of On-delay timers, Off-				LU
delay timers, Retentive Timers, Non retentive Timers, Pulse timers,				
Cascaded timers.				
3.2 Timer Parameters: Preset value, Time base, Total time delay,				
Significance of Timer timing and Timer Out.				
3.3 Counters: Function and list of applications of Up and Down				
counters.				
3.4 Counter Parameters: Preset value, Accumulated Value, Clock				
Input and counter Overflow and Underflow indications				
4. PROGRAMMING a PLC	15	8	CO 3	L3
			CO 4	L4
4.1 ladder programs to represent logic functions (AND, OR, NOT,				
NAND, NOR, XOR)				
4.2 ladder programs for switches, latching circuits, multiple outputs				
and sequenced outputs				
4.3 Ladder programs and functional block diagrams from boolean				
expressions(POS, SOP)				
4.4 Simple Ladder programs using data handling and mathematical				
instructions.				
4.5 Simple Ladder programs using internal relay, master control relay				
and shift register.				
4.6 Simple Ladder programs using timers and counters				
5. DESIGNING SYSTEMS	12	8	CO 2	L1,L2
5.1 Brief overview of steps in systematic designing of a PLC based				
System.				
5.2 Safety in PLCs – emergency stop relays.				
5.3 Commissioning a PLC – Testing of inputs & outputs, Testing				
Software, and Simulation.				
5.4 Fault finding: Fault detection techniques – timing checks, last				
output set, replication and expected value checks.				
5.5 Brief overview of System documentation.				
•				
L	1		I	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	PLC HARDWARE	12	18
2	PLC INSTRUCTIONS AND FUNCTIONAL BLOCKS	12	18
3	TIMERS & COUNTERS	08	12
4	PROGRAMMING A PLC	08	15
5	DESIGNING SYSTEMS	08	12
		48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Introduction to the PLC simulation software.	
2.	Compare Specifications of different PLCs	
3.	Ladder programming for logical functions	
4.	Ladder programming for latching functions	
5.	Ladder programming for data manipulation functions	
6.	Ladder programming for mathematical functions	
7.	Ladder programming for shift registers functions	
8.	Ladder programming for internal relay and master control relay functions.	
9.	Ladder programming for timer functions	
10.	Ladder programming for counter functions	
11.	Micro Project (simple Application)	
No	Class room Assignments	Marks
1	Atleast 02 assignments.	
•••		
No	Tutorial Exercise	Marks
1	To be decided by the subject teacher as per requirements	
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	William Bolton	Programmable Logic Controllers	ELSEVIER, Newnes.
		5 th Edition	ISBN:978-93-80501-46-8
2	Frank D Petruzella	Programmable Logic Controllers	McGraw Hill Higher
		3 rd Edition	Education or TMH

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Madhuchhanda Mitra, Samarjit Sen Gupta	PLC & Industrial Automation an introduction 5 th Edition	PENRAM International publishing ISBN:9788187972297
2	John W. Webb, Ronald A. Reis	Programmable Logic Controllers: Principles and Applications 5 th Edition	Prentice Hall of India
3	George Batten	Programmable Logic Controllers.	Tata McGraw Hill

(CC601) INDUSTRIAL ORGANISATION AND MANAGEMENT

1. AIM :To acquaint the students with management and other related aspects in order to achieve the organisational goals.

2. RATIONALE

Management is the basic need of any organization. Organization consists of multiple activities which are to be systematically managed for effective output. The course covers various principles related to organization and management. The areas covered are finance, human resource, project management etc. After completion of the course, the student will be able to apply the knowledge in the world of work.

3.PRE-REQUISITES: Nil

4.TEACHING AND EXAMINATION SCHEME

Course Code	P	Periods/		Total	Examination Scheme				
& Course Title	Week (in hours)			Theory Marks		Practical Marks		Total Marks	
CC601 Industrial	L	Т	P	C	ТН	TM	TW	PR/OR	
Organisation and Management	3	-	-	3	75	25	-	-	100

5. COURSE OUTCOMES

On successful completion of the course, the student will be able to:

CO1: Understand the types of business organizations

CO2: Apply basic management principles in the industry

CO3:Explain the basics of finance and human resource

CO4: Analyse the basic problems of management

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Disciplin e Specific Knowled ge	Problem Analysis	Design and Devlopm ent of Solutions	Engg. Tools, Experime ntatn& Testing	Engg. Practices for Society,S ustainabil ity& Environm ent	Project Managem ent	Life -long Learning
CO1	0	0	0	0	0	3	3
CO2	1	3	0	0	3	3	3
CO3	3	0	0	0	0	3	3
CO4	3	3	0	0	3	3	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
	T0 use Knowledge of power & design engg. For solvingeng g. problems	To apply the principles of Mgmt. & Mfg. Mfg. technology to effectively plan and control the industrial activities
CO1	0	3
CO2	0	3
CO1 CO2 CO3 CO4	0	3
CO4	0	3

7. DETAILED COURSE CONTENTS/ MICRO-LESSON PLAN

M=Marks Thr= Teaching hours CO= Course Outcomes				
Unit	M	Thr	CO	Levels
1.Business Organization	10	6	CO1	L1,L2
1.1 Types of business organizations: Individual				
proprietorship, Partnership, Joint Stock Companies: Private Ltd				
and Public Ltd, Co-operative societies, Public sector				
1.2 Structure of business organization: Line organization, Functional organisation, Line and staff organization, Project				
organization				
organization				
2.Business Management	16	9	CO2	L1,L2
2.1: Concept of management and administration, management as				
an art and science, evolution and growth of scientific				
management- contribution of F.W Taylor.				
2.2 Basic functions of management : planning, organizing,				
staffing, directing, controlling.				
Other functions: forecasting, coordinating and decision- making.				
2.3 Functions in Industry: Basics of				
procuring, store- keeping, material handling, production, packing and forwarding, marketing and sales, supervision, research and				
development.				
2.4Supervisory skills required in industry				
2000 aper visory similar required in measury				
3.Basics of Finance	18	13	CO2,	L1,L2,
3.1 Sources of finance			CO3	L3,L4
3.2 Cost Concepts: Necessity of costing, elements of cost:				
material, labour and expense; prime cost, overhead cost, total				
cost, break- even analysis.				
3.3 Materials management: Inventory control-standard order,				
reserve stock, reorder point, lead time. Economic order quantity, ABC Analysis.				
Introduction to Just in time (JIT) system				
macadation to subt in time (011) by stem		1	l	İ

 3.4 Depreciation: Definition and causes. Methods of calculating depreciation charges: Straight Line Method, Diminishing Balance Method, Sinking Fund method 3.5 Obsolescence- definitions and reasons. 3.6 Introduction to GST. 				
 4.Human Resource Management 4.1 Functions of Personnel Department: Human resource planning, selection and recruitment, training, promotion and transfer, welfare of employees. 4.2 Industrial Relations: Employer-employee relations, trade union, settlement of disputes of employees, collective bargaining, conciliation, arbitration, grievance handling mechanism. 4.3 Wages and Incentives: Factors influencing wages, types of wage plans – time rate and piece rate, Incentive – objectives and types, individual and group incentive plan, characteristics of a good wage or incentive plan, difference between incentive and wage. 4.4 Industrial Acts: Introduction to the following Industrial Acts: Industrial Disputes Act 1947/1956; The Indian Factories Act 1948 The Workmen's Compensation Act 1923 	21	14	CO2, CO3	L1,L2
5.Project Management 5.1 Introduction to Project Management 5.2 Network Analysis (Introduction to basic concepts with simple problems) CPM- Critical Path Method: Definition, network diagrams, critical path, advantages PERT- Programme Evaluation and Review Technique: Definition, network diagrams, advantages. Comparison of PERT and CPM.	10	6	CO2, CO4	L1,L2, L3,L4, L5
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Business Organization	6	10
2	Business Management	9	16
3	Basics of Finance	13	18
4	Human Resource Management	14	21
5	Project Management	6	10
	Total	48	75

10.LEARNING RESOURCES

Text Books

S.No	Author	Title of Book	Publisher
1	O.P. Khanna	Industrial Engineering and Management	DhanpatRai
			Publications
2	T.R.Banga ,S.C.	Industrial Organisation and Engineering	Khanna
	Sharma	Economics	Publishers
3	Awate,Chunawala,	Industrial Organisation and Management	Vrinda
	Patel,Bhandarkar,		Publication
	Sriniwasan		
4	MartandTelsang	Industrial Engineering and Production	S.Chand&
		Management	Company
			Ltd

ELECTIVES – SEMESTER V

(EX611) Biomedical Instrumentation

1. AIM

Students of electronics engineering related branches opting for this course will be introduced to the basic concepts of biomedical instrumentation enabling them to pursue a career in the health care sector.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Assist doctors in a hospital as biomedical engineers.
- 2. Work as service engineers for medical equipment maintenance.

3. PRE-REQUISITES:

- 1. Knowledge of basic principles of physics
- 2. Knowledge of basic electronics
- 3. Knowledge of sensors and transducers

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Periods/Week			Total	Examination Scheme				
course title	course title (in hours)		rs)	Credits	Theory		Practical		Total
					Marks		Marks		Marks
(EX611)	L	T	P	C	TH	TM	TW	PR/OR	
Biomedical	3	-	2	5	75	25	25	25	150
Instrumentation									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Demonstrate a knowledge of the working principles of clinical laboratory instruments
- 2. Perform various physiological measurements
- 3. Perform pulmonary function measurements
- 4. Demonstrate a knowledge of medical imaging equipment and nuclear medicine

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	0	1	3	2	0	0
CO2	3	0	1	3	3	0	2
CO3	2	0	1	2	3	0	0
CO4	2	0	1	1	3	0	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	0
CO2	2	1
CO3	2	1
CO4	2	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks TH= Teaching hours CO = Course Objectives				
Unit	M	T H	CO	Levels
1 CLINICAL LABORATORY INSTRUMENTS	12	08	CO1	L1,L2
1.1 Medical diagnosis with chemical test, principles of		00	001	21,22
spectrophotometry,				
colorimeters and clinical flame photometers				
1.2 Types of blood cells, methods of blood cell counting- microscopic				
method, automatic optical method, electrical conductivity method,				
coulter counter				
2 PHYSIOLOGICAL INSTRUMENTATION	18	12	CO2	L2,L3
2.1Origin of bioelectric signals, recording electrodes, electrode tissue				
interface, polarization, skin contact impedance, motion artifacts.Block				
diagram of a typical biopotential recording system				
2.2 Block diagram of Electrocardiogram system, ECG leads, effects of				
artefacts on ECG recordings				
2.3 Electroencephelogram (EEG)-Block diagram, electrode placement				
2.4 Electromyography(EMG)-generation of EMG signals				
2.5 Evoked response potentials				
2.6 Blood pressure, blood pressure measurement using korotkoff's				
method (sphygmomanometer), Invasive measurement of blood pressure				

2.7 Measurement of Oxygen in the Blood, working of Pulse Oximeter				
3 PULMONARY FUNCTION MEASUREMENTS	12	04	CO3	L2,L3
3.1 Respiratory volumes and capacities				,
3.2 Spirometry and its applications, Working of water seal spirometer,				
wedge spirometer and Fleisch- pneumotachometer				
3.3Measurement of volume- flow volume curve				
4 MEDICAL IMAGING FUNDAMENTALS	21	12	CO4	L2,L3
4.1 Basics of Diagnostic Radiology, Nature and properties of x-rays,				
production of x-rays, stationary anode tube, Rotating Anode tube, x-ray				
machine, collimators & grids, x-ray films, x-ray Image intensifier				
4.2 Principle of computed tomography				
4.3 Principles of Magnetic resonance imaging (MRI) systems, Basic				
NMR components, Biological effects of NMR imaging, advantages of				
NMR imaging system.				
4.4 Diagnostic ultrasound-nature of ultrasound, ultrasound generators,				
interaction of ultrasound with matter, Pulse-Echo display modes in				
ultrasonic imaging(A-mode, B-mode and M-mode),Components of				
an ultrasound System (Block diagram level), Scanning probes				
(working of linear array and curved array transducer), Principle and				
Applications (listing only) of Doppler ultrasound, Principle of				
Echocardiography				
5NUCLEAR MEDICINE	12	12	CO4	L2,L3
5.1 Radioactivity, radioactive decay law, interaction of radiation with				
matter				
5.2 Working of Scintillation detectors and Gamma Camera				
5.3 Principles and applications of SPECT and PET				
5.4 Radiation hazards and prevention, biological effects of radiation				
exposure				
Total	75	48	-	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Clinical laboratory instruments	08	12
2	Physiological instrumentation	12	18
3	Pulmonary function measurements	04	12
4	Medical imaging fundamentals	12	21
5	Nuclear medicine	12	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Blood pressure measurement using a sphygmomanometer	
2	Study of ECG signal measurement	
3.	Study of patient monitoring system	
4.	Study of x-ray machine	
5.	Study of CT-scanner	
6.	Study of MRI scanner	
7.	Study of Sonography machine	
8.	Field visit to a hospital to study hospital layout, patient monitoring system,	
	x-ray machines, CT-scanners, MRI scanners, pathlab, etc.	
9.	Field visit to an occupational health centre to study pulmonary function	
	measurements	
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.S. Kandpur	Handbook of biomedical	McGraw Hill
		instrumentation	
2	Leslie Cromwell	Biomedical instrumentation and	
		measurements	
3	John webster	Medical Instrumentation	John Wiley and sons
4	Satish K Bhargava	Step by Step: Ultrasound	
5	Sandra L. Hagen-	Textbook of diagnostic sonography	
	Ansert		

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	D. Jennings, A.	Introduction to Medical Electronics	Edward Arnold,
	Flint, B.C.H. Turton	Applications	
	and L.D.M. Nokes		
2	Ramesh Chandra	Introductory Physics of Nuclear	Lea & Febiger
		Medicine	
3	Harry E Thomas	Handbook of biomedical instrument	Prentice Hall
		and measurement	

(EX612) Autonomous Robots

1. AIM

Robotics is a fast –Growing field whose definition has been evolving over time, along with the field itself. Other than industrial applications, Robots are increasingly being used in newer field of application like medicine, space, exploration, and hazardous environment, military and domestic use. There is huge demand for innovation in autonomous robots in new areas like virtual reality, cars, personal care for disabled people. Robots are likely to be common basic necessity as human try to survive in a harsher future with security treats, depleted natural recourses and global climatic changes

2. COURSE OBJECTIVES / RATIONALE:

- To introduce students to Arduino Interactive Development IDE
- To enable them to understand the working and various types of Arduino board
- To help them build innovative projects using Arduino and IOT
- To introduce students to Internet of Things

3. PRE-REQUISITES:

Students should know

- programming concepts
- processing unit

4. TEACHING AND EXAMINATION SCHEME

Course Code	F	Perio	ds/	Total		Exai	amination Scheme				
&	(In	Wee n Ho		Credit	Theory Marks Practical Mar		Theory Marks Practical Marks		Practical Marks		Total Marks
Course Title											
(EX612) Autonomous Robots	L	Т	P	C	ТН	TM	TW	PR/O R	150		
	3	-	2	5	75	25	25	25	150		

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the concept of Arduino processor and IOT
- 2. Apply the basic protocol and working principle of interfacing Modules.
- 3. Analyze various application program for wide range of Arduino processors
- 4. Design, debug and troubleshoot Arduino/IOT based project

6. Mapping Course Outcomes with Program Outcomes

Relationship : 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Disciplin e Specific	Problem Analysis	Design and Devlopm ent of	gg. ols, serir atn&	Engg. Practices for Society, S ustainabi	ject nage nt	Life - long Learning
CO1	3	2	1	0	0	0	2
CO2	2	3	2	1	2	0	3
CO3	0	3	3	2	3	0	3
CO4	0	3	3	3	3	3	3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	CO	L
		r		E
				V
				E
				L
1 Autonomous Robotics				
1.1 definition of Robot, industrial Robot, Autonomous Robot, Applications	1	12	CO1	1
1.2 Autonomous Robot Types: wheeled and Legged, types of Stability:	8		CO2	
dynamic and Static				
1.3 Control Components of AR: wired control, IR control, Radio Control,				
ZigBee				
1.4 Sensor Navigation: Bump Switch, IR Sensor, Ultrasonic Range Finder,				
Accelerometer, GPS module, GPRS module				
1.5 Block Diagram and Working Principle of Servo Motor and DC motor				

2 Introduction to Arduino Programming	1	8	CO3	1
2.1 Block diagram, input and output pins of Arduino Uno development	4			
Board				
2.2 Basic Commands of Arduino Programming				
Void Setup (), Void Loop(), pinMode(),				
2.3 basic Commands for Serial Communication, analog Input/Output, Digital				
Input/output, delay commands				
3 Sensor module interfacing with Arduino Uno (interfacing diagram	1	12	CO2,	2,
and Arduino sketch for the following)	8		CO3	3
3.1 motion detector: tilt sensor, PIR				
3.2 light detector:LDR				
3.3 Distance Measurement Ultrasonic Sensor, IR sensor 3.4 Vibration detector: Piezo sensor				
3.5 sound detector: Microphone				
3.6 Temperature Sensor: LM35				
3.7 Rotary Encoder				
3.8 GPS				
[Note: Knowledge of interfacing any of above Sensor module with Arduino				
is of LEVEL 2 and writing Arduino sketch for such interfacing is of				
LEVEL3]				
4 Motor control with Arduino Uno (interfacing diagram and Arduino	1	8	CO2,	2,
sketch for the following)	3		CO3,	3
4.1 controlling position of servo motor			CO4	
4.2 Controlling direction of DC motor using transistor H-bridge				
4.3 Controlling direction of DC motor using IC: Movements for two wheeled				
Robot: move forward, move back ward, stop, move left, move righ <i>(LEVEL</i>				
3)				
51.4 AOCTI: (IOT)	1	0	001	1
5 Internet Of Things (IOT) 5 1 Introduction to LoT Defining LoT Characteristics of LoT Physical design	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	8	CO1,	1,
5.1 Introduction to IoT Defining IoT, Characteristics of IoT, Physical design of IoT. Logical design of IoT. Functional blocks of IoT.	2		CO2, CO3,	2,
of IoT, Logical design of IoT, Functional blocks of IoT, Communication models, IOT Module <i>(LEVEL 1)</i>			CO3,	3,
5.2 interfacing IOT module to Arduino Board (LEVEL 2)			004	🕇
5.3 Arduino based IOT Applications (LEVEL 4)				
· · · · · · · · · · · · · · · · · · ·				
Total	7	48	-	
	5			

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit		Number	Marks
No			of	
			lectures	
1	Autonomous Robotics		12	18
2	Introduction to Arduino Programming		8	14
3	Sensor module interfacing with Arduino Uno		12	18
4	Motor control with Arduino Uno		8	13
5	Internet Of Things (IOT)		8	12
		Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Interfacing and Programming of Arduino with motion detector: tilt sensor,	2
	PIR, Gyroscope, Accelerometer (any one)	
2	Interfacing and Programming of Arduino with LDR	2
3	Interfacing and Programming of Arduino with ultrasonic Sensor/IR sensor	2
4	Interfacing and Programming of Arduino with Piezo Sensor	2
5	Interfacing and Programming of Arduino with microphone	2
6	Interfacing and Programming of Arduino with LM35	2
7	Interfacing and Programming of Arduino with servo motor	2
8	Interfacing and Programming of Arduino with DC motor	2
9	Programming Arduino for two wheeled Robot interfaced to Arduino for	4
	following movement like Move forward, Move back ward, stop, move left,	
	move right	
10	Mini Projects: Line Follower, obstacle Avoider, etc.	5
	Total	25
		marks

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Massimo Banzi	Getting started with Arduino	Second Edition,
1	Wiassiiio Dalizi	Getting started with Ardumo	O'reilly
			Latest
2	Maja J. Mataric	Robotics Primer	Latest
2	Brian Evans	Beginning Arduino Programming	A Press Publishers,
3	Difail Evalis	Beginning Ardumo Programming	Recent Edition
4	Vijay Madisetti,	"Internet of Things: A Hands-On	Recent edition
	Arshdeep Bahga,	Approach"	

(EX613) Renewable Energy

1. AIM: To enable the student to understand various Renewable Energy Sources and their application

2. COURSE OBJECTIVES:

The students will able to:

- 1. Compare conventional energy sources with renewable energy sources
- 2. Develop applications using these energy sources
- 3. Prioritize energy sources
- 3. PRE-REQUISITES: Basic Electrical and Sciences

4. TEACHING AND EXAMINATION SCHEME

Semester	V									
Course code	Course code &		Periods/Week		Total	Examination Scheme				
course title		(iı	n hou	rs)	Credits	Credits Theory Practical Marks Marks			Total Marks	
(EX613)		L	T	P	С	TH	TM	TW	PR/OR	
Renewable	e	3	-	2	5	75	25	25	25	150
Energy										

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Define and find different energy sources
- 2. Explain different components of solar, wind energy Tidal and biomass plant devices
- 3 Compare the conventional energy sources with renewable on the basis of availability, infrastructure requirements and future scope.
- 4. Analyze the conventional energy sources with renewable on the basis of cost. i.e Perform audit

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	1	2	1	3	3	3
CO2	2	3	3	2	3	2	3
CO3	2	2	3	2	2	2	3
CO4	3	3	3	3	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	C	Lev
			0	el
1 Introduction to energy sources	12	9	1,2	
			,3,	1,2
1.1 Major sources of energy: Renewable and Non-renewable			4	
1.2 Primary and secondary energy sources				
1.3 Principles of energy conservation, Methods of energy conservation				
1.4 Need and advantages of renewable energy and their limitations.				3
Future of renewable energy, Energy Scenario in India				
1.5 Energy audit : Types of energy Audit				4
2 Solar Energy	18	13	1,2	1,2,3
			,3	
2.1 Principle of conversion of solar energy into heat and electricity				
2.2 Types of collectors : concentrating(focussing) and non-				
concentrating				
Concentrating: Different types: construction and working of any one				
concentrating collector				
Non- concentrating: types, construction and working of Flat plate				
collectors.				
2.3 Solar energy storage system: Need for storage, Different types :				
Thermal, mechanical and Electrical				
Electrical Storage : battery Storage type				

2.4 Applications : Enlist applications				
solar water heater :Concept, Advantages , disadvantages				
3 Wind Energy				
3.1 Basic principle of wind energy, Environmental aspects of wind	16	09	1,2	1,2,3
energy.Basic components of wind energy conversion system			,3	
3.2 Wind power :available wind power formulation, power coefficient,				
maximum power (no numerical)				
Main considerations in selecting the site for wind mills				
Classification of wind mills: construction and working of horizontal				
axis wind mills				
3.2 Enlist applications of wind energy, Advantages and limitations of				
wind energy conversions,				
4 Energy from Biomass	16	09	1,2	1,2,3
4.1 Introduction :Biomass resources			,3	
4.2 Biomass conversion technologies : direct combustion, thermo-				
chemical conversion, Bio chemical conversion, Biogas generation				
4.3 Types of biogas plants: floating drum type- construction and				
working, Factors affecting biogas generation				
4.4 Applications : Advantages, disadvantages				
5 Tidal Energy and Wave Energy	13	08	1,2	1,2,3
5.1 Tides as sources of energy, Fundamentals of tidal power,			,3	
5.2 Use of tidal energy, Limitations of tidal energy conversion systems				
5.3 Sketch and Working of simple Tidal Power Plant.				
5.4 Waves as Sources of Energy				
5.5 Principle of conversion of Wave Energy into Power-Construction				
and working of any one wave energy converter				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to Energy Sources	7	12
2	Solar Energy	12	18
3	Biogas	10	15
4	Biomass cogeneration, Biomass resource development in India	10	15
5	Tidal Energy and Wave Energy	9	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Perform an experiment using a solar cooker.	
2	To perform an experiment on solar flat plate collector used for water	
	heating.	
3	Setting up a photovoltaic cell for lighting with focus on orientation of	
	panels and measuring output in terms of voltage & current.	
4	Visit to plant of solar heating system for hotel/hostel/railway stations etc	
	and write a brief report on the visit.	
5	To visit biomass / biogas plant of Municipal waste or elsewhere and write a	
	brief report on the visit.	
6	Demonstration of Video/animation on Tidal Energy Generation	
7	Demonstration of Video/animation on Wave Energy Plant	
8	Demonstration of Video/animation on Windmill.	
9	Perform energy audit for workshop / Office / SSI unit.	
10	Perform an experiment using a solar cooker.	
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Dr. B. H. Khan	Non conventional energy Resources	Tata McGraw Hill
2	G. D. Rai	Non conventional energy sources	Khanna Publishers
3	S. P. Sukhatme	Solar energy Principles	Tata McGraw Hill
4	P. H. Henderson	India – The Energy sector	University Press

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	D.A. Ray	Industrial Energy Conservation	Pergaman Press
2	W. C. Turner	Energy management Handbook	Wiley Press
3	S. Rao, B. Parulekar	Energy Technology	Khanna Publishers

(EX614) Electrical Machines

1. AIM

This subject enables the student to understand the working principle, construction, performance, control and applications of electrical machines.

2. COURSE OBJECTIVES:

The students will able to:

- 1. List parts of electrical machines
- 2. Classify different types of Electrical Machines
- 3. Understand concept of synchronous condenser

3. PRE-REQUISITES:

Students should know

- 1. Applied Physics
- 2. Basic Electrical Engg

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(in hours)		Credits	Theory Marks		Practical Marks		Total Marks	
(EX614)	L	T	P	С	TH	TM	TW	PR/OR	
Electrical Machines	3	_	2	5	75	25	25	-	125

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain principle of operation and construction of Electrical Machines
- 2. Demonstrate various methods of starting and speed control of Motors, parallel operation of alternators
- 3. Perform different types of tests on Electrical machines
- 4. Compare and Recommend suitable machines for given application

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentat n& Testing	Engg. Practices for Society, Susta inability & Environment	Project Management	Life -long Learning
CO1	2						1
CO2	2	1		3	2		1
CO3	2			3	2	2	1
CO4	2	1	3				2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	
CO2	2	
CO3	2	
CO4	2	

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	C	Le
		r	0	vel
				S
1 TRANSFORMERS (NO NUMERICAL)			CO	L1,
	21	14	1,3	3,4
			,4	
1.1 Constructionand working principle of a transformer.	12	9	CO	L1
Various types of insulation used in transformers- inter turn, winding to			1	
winding, winding to core.				
Cooling system- need of cooling & different types of cooling systems.				
Final Equivalent circuit of transformers				
1.3 Procedure and diagram of Open Circuit & Short Circuit test.	9	5	CO	L3,
Salient features of a power & distribution transformer (three phase).			3,4	4
Construction & principle of operation of an autotransformer, its advantages				
& disadvantages over two winding transformer				
2 DC MOTORS (NO NUMERICAL)	9	06	CO	L1,
,			1,2	2

2.1 Principle of operation & working, concept of back emf & its importance Classification of DC motors based on connection of field & armature winding and their voltage & power equations, speed equation. Methods of speed control and their comparison. Starting of DC motors – Necessity of a starter, three point & four point starters	9	6	CO 1,2	L1, 2
3 THREE PHASE INDUCTION MOTOR	18	11	CO 1,2	L 1,2
3.1 Working principle of 3 phase Induction motor, constructional details and its types:- slip ring and squirrel cage. Concept of rotor slip, rotor frequency, rotor emf, rotor current under standstill and running condition (numerical) Final Equivalent circuit diagram.	9	6	CO 1	L1
3.2Power flow and losses in induction motor. Different methods of speed control (brief description) Terminal marking for three phase induction motor	9	5	CO 2	L2
4 ALTERNATOR (NO NUMERICAL)	21	14	CO 1,2 ,3	L 1,2 ,3
4.1 Classification, construction, components and functions of salient pole & cylindrical pole type.	9	6	CO 1	L1
4.2 Operating parameters – armature resistance, leakage reactance, synchronous reactance and synchronous impedance. Significance of Voltage Regulation in alternator.	6	4	CO 3	L3
4.3 Necessity & desirable conditions for parallel operation of alternators. Methods of synchronizing of alternators (lamp method and synchroscope method)	6	4	CO 2	L2
5 SYNCHRONOUS MOTOR AND CONDENSER	06	03	CO 4	L4
5.1 Principle of operation and special features of synchronous motor. Concept of synchronous condenser.	6	3	CO 4	L4
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Transformers	14	21
2	Classification and starting of DC motors	6	9
3	Performance of Three phase induction motor	11	18
4	Alternator	14	21
5	Synchronous motor and condenser	03	06
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 8)	Marks
1.	To perform O.C & S.C test on a single phase transformer	
2.	To perform back to back test on a single phase transformer to determine losses and calculate efficiency and regulation	
3.	To study direct load test on a three phase transformer and measurement of its voltage regulation.	
4.	Speed control of a DC shunt motor above & below normal speed.	
5.	Starting a DC shunt motor using a starter and reversal of direction of rotation	
6.	To perform no load & blocked rotor test on a 3 phase induction motor and Determine its equivalent circuit parameters	
7.	To perform load test on induction motor	
8.	To perform O.C & S.C test on an alternator and determine its voltage regulation.	
9.	To determine the excitation required to maintain constant voltage in an alternator under varying voltages.	
10.	To study synchronization of alternators	
	Total	25
	Class room Assignments	Marks
	At least 02 assignments	
	Tutorial Exercise	Marks
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	BHEL	Transformers	Tata Mcgraw
2	S.K. Bhattacharya	Electrical machinery	Tata Mcgraw
3	J.B.Gupta.	Thoery & performance of Electrical Machines	S. K. Kataria & sons
4	B.L.Theraja.	Electrical Technology (Vol II)	S Chand
5	P.S. Bhimbra.	Elementary theory of electrical machines	Khanna Publishers

(EX615) WEB DESIGNING TECHNOLOGIES

1. AIM

- 1. To introduce students to various Web designing technologies used and protocols used in Internet
- 2. To enable students to design Web pages using HTML
- 3. To train students to develop and deploy Web sites implemented having a front-end, back-end processing and a database

2. COURSE OBJECTIVES:

The students will able to:

- 1. Understand the basic working of the Internet and be aware of various technologies used in Web designing
- 2. Design and develop simple websites by implementing suitable user interface and back-end processing

3. PRE-REQUISITES:

Students should know

- 1. Basics of computer hardware and simple softwares
- 2. Surfing the Internet

4. TEACHING AND EXAMINATION SCHEME

Semester V										
Course code &	Periods/Week		Total		Examination Scheme					
course title	(iı	n hou	rs)	Credits		Theory Practical Marks Marks			Total Marks	
(EX615)	L	T	P	С	TH	TM	TW	PR/OR		
Web Designing Technologies	3	-	2	5	75	25	25	25	150	

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain various technologies used in website designing and protocols used on the Internet
- 2. Build static and dynamic web pages using HTML and apply front-end validation using Javascript
- 3. Analyze simple web pages which include back-end processing using php
- 4. Evaluate a simple database and design Web pages to access the database

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	ngg. ools, tperima	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	1	0	0	0	0	2
CO2	0	1	1	0	0	3	2
CO3	0	0	1	0	0	3	2
CO4	2	1	1	1	2	3	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	1
CO2	2	2
CO3	2	2
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	СО	Lev els
1 INTRODUCTION TO INTERNET, PROTOCOLS AND WEB	21	14	CO1	L1
TECHNOLOGIES				
1.1 INTRODUCTION TO THE INTERNET				
IP addresses, domain names, Working of Web browsers and Web				
servers, URLs				
1.2 INTERNET PROTOCOLS				
TCP/IP basics, Basic working and features of the following protocols				
- IP protocol (including IPV4 datagram format), address resolution				
protocol (ARP), reverse address resolution protocol (RARP), Internet				
control message protocol (ICMP), TCP, DNS, SMTP, POP,				
hypertext transfer protocol (http).				
1.3 WEB TECHNOLOGIES				
Web pages (types and issues), Concept of a tier, Comparison of				
Microsoft and Java technologies.				
Static web pages, plug-ins.				
Need for dynamic web pages, overview of dynamic web pages and				
technologies.				
Active web pages – Introduction and advantages.				
Different Web browsers, programming languages used in Web page				
development (front-end and back-end), databases, frameworks and data				
formats (LISTING ONLY)				

2 HTML	18	10	CO2	L2
2.1 HYPERTEXT MARKUP LANGUAGE				
Basic syntax, basic text formatting, images, hypertext links, lists, tables,				
frames, forms, creating simple HTML pages using these tags and their				
attributes				
3 BASICS OF JAVASCRIPT	12	08	CO2	L2
3.1 INTRODUCTION TO JAVASCRIPT				
Javascript uses, Javascript objects, reserved words.				
3.2 PROGRAMMING USING JAVASCRIPT				
Javascript syntax, primitives, operators, expressions, screen output,				
control statements, arrays, functions.				
3.3 JAVASCRIPT OBJECTS AND EVENT HANDLERS				
Core Javascript built-in objects and their methods and properties				
(Document object, Date object, Math object, String object, Array object),				
events and event handlers				
4 INTRODUCTION TO PHP	12	08	CO3	L3
4.1 PHP BASICS				
Overview of php, general syntax, primitives				
4.2 PROGRAMMING USING PHP				
Operations and expressions, output, control statements, arrays, functions,				
form handling, cookies, session tracking, simple programs				
5 WEB SERVERS AND DATABASE ACCESS	12	08	CO4	L4
5.1 WEB SERVERS				
Web server operation, general server characteristics.				
5.2 RELATIONAL DATABASE				
Introduction to relational databases, Introduction to Structured Query				
language (SQL) – CREATE, INSERT, UPDATE, DELETE commands,				
the MySQL database system, database access with PHP and MySQL,				
writing Web pages to process validated data from HTML forms using php				
and retrieve as well as store records in mysql database				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION TO INTERNET, PROTOCOLS AND WEB	14	21
	TECHNOLOGIES		
2	HTML	10	18
3	BASICS OF JAVASCRIPT	8	12
4	INTRODUCTION TO PHP	8	12
5	WEB SERVERS AND DATABASE ACCESS	8	12
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Study the various features available in a Web browser	
	Create a simple website (minimum 8 webpages) on the local server using	
	HTML, PHP and MySQL which implements the following:	
2.	Write HTML codes for text formatting and images	
3.	Write HTML code to create lists and tables	
4.	Write HTML code using hyperlinks and frames	
5.	Write HTML code using forms	
6.	Write Javascript code to perform form validation	
7.	Write php code to process data from an HTML form	
8.	Configure apache Web server and php and create a simple MySQL	
	database	
9.	Write HTML and PHP code to process data from a MySQL database	
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Robert W. Sebesta	Programming the World Wide Web	Pearson Education
2	Achyut Godbole and	Web Technologies	Tata McGraw-Hill
	Atul Kahate		Publishing Company
			Limited
3	C. Xavier	Web Technology and design	New Age
4	Laura Lemay	Mastering HTML,CSS & Javascript	BPB Publications
		web publishing	
5	Danny Goodman	Javascript bible	Wiley
6	Mike McGrath	PHP and mysql	McGraw Hill
			Education

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Deven Shah	Advanced Internet technology	Dreamtech Press
2	Ivan Bayross		Paperback ISBN: 9788183330084
3	Kogent Learning SolutionsInc	Internet Technologies	Dreamtech Press

Website resources

https://differential.com/insights/14-technologies-every-web-developer-should-be-able-to-
explain/

http://www.html.net

http://www.w3schools.com

http://www.tutorialpoint.com

(EX616) VHDL

- 1. AIM: To introduce hardware description languageVHDL and its application in designing digital circuits and hardware in FPGAs
- 2. COURSE OBJECTIVES: learn VHDL programming and use it to design and simulate different types of digital circuits and programmable logic devices and field programmable gate arrays..

The students will able to:

- 1. Learn VHDL programming.
- 2. Design and write codes for different digital circuits
- 3. Use VHDL for simulating the operation of digital hardware
- **3. PRE-REQUISITES:** Students should know
- 1. Basic knowledge of c programming
- 2. Combinational and synchronous sequential circuits
- 3. Flip flops, registers and counters

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Peri	iods/V	Veek	Total		Exan	ninatior	Scheme	
course title	(iı	n hou	rs)	Credits	Theory Marks		Practical Marks		Total Marks
(EX616)	L	T	P	С	TH	TM	TW	PR/OR	
VHDL	3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Develop basic programming skills in VHDL
- 2. Write/Develop VHDL codes for combinational and sequential digital circuits
- 3. Compile, debug and simulate VHDL codes for combinational and sequential digital Circuits.
- 4. Design digital circuits and logic devices

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	2	3	1	0	2	3
CO2	2	3	3	2	0	2	3
CO3	2	3	1	3	0	2	3
CO4	2	3	3	2	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	2	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	C	Le
		r	O	vel
				S
1.Overview of digital design with VHDL	9	5	1	1,2
1.1 1.1 VHDL:-What is VHDL				
Hardware abstraction				
Why use VHDL				
Shortcomings of VHDL				
steps in using VHDL for design Synthesis				
1.2 Hierarchical Modeling techniques- Top down and bottom up design				
methodology, difference between modules and instances (only definition)				
2. VHDL reference	15	9	1	1,2
2.1 Documentation (comment line)				
Data objects				
Data object names				
Data object values and numbers				
Signal data objects				
Bit and Bit vector types				
STD_LOGIC and STD_LOGIC_VECTOR types				

Signed and unsigned type				
• INTEGER type				
 CONSTANT data objects 				
 VARIABLE data objects 				
 Arrays 				
Operators				
2.2 VHDL design entity-Entity declaration, Architecture, Package.				
writing simple VHDL code for a given logic function				
3 VHDL code for combinational circuits	21	14	2,3	1,2
3.1 selected signal assignment- 4-to-1 mux				
3.2 conditional signal assignment-priority encoder, 4 bit comparator				
3.3 process statement-2-to-1 mux using if-then-else statement				
3.4 case statement- 2-to-4 binary decoder,BCD to 7 segment				
3.55 VHDL code for:				
 And,,or,nand,nor gates 				
• 4 bit arithmetic adder,4 bit arithmetic subtractor				
4 Flip Flops, Registers	12	8	2,3	1,2
4.1 Circuit, timing diagram, graphical symbol and VHDL code of:gated D latch, D flip flop, T flip flop and JK flip flop				
4.2 Circuit diagram and VHDL code of- simple shift register and parallel-access shift register				
5 Synchronous Sequential circuits and logic devices	18	12	3,4	1,2
5.1 Circuit diagram and timing diagram of-4-bit up counter,4-bit down counter,2-digit BCD counter.				
5.2 Moore type finite state machine-state diagram and VHDL code	1			3
5.3 Mealy type finite state machine-state diagram and VHDL code.				3
5.4 Programmable logic devices-PAL,PLA,CPLD,FPGA, applications of CPLD and FPGA				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	No. of lectures	Marks
1	Overview of digital design with VHDL	5	9
2	VHDL reference	9	15
3	VHDL code for combinational circuits	14	21
4	Flip Flops, Registers	8	12
5	Synchronous Sequential circuits	12	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Design and simulate using -VHDL language	
1.	Design and implementation of Basic gates-AND,OR,NOT gates	
2	Design and implementation of 4-to-1 mux	
3	Design and implementation of 2-t0-4 Decoder	
4	Design and implementation of RS Flip Flop	
5	Design and implementation of JK Flip Flop	
6	Design and implementation of D Flip Flop	
7	Design and implementation of 4 bit up counter	
8	Design and implementation of shift register	
9	Design and implementation of logic devices	

11. LEARNING RESOURCES

Text Books

S. no.	Author	Title of Books	Publishers
1	Stephen Brown	Fundamentals of Digital	Tata McGraw Hill,2008, India,
	and Vranesic	Logic with VHDL design	ISBN 978-0-07-352953-0
2	Samir Palnitkar	Verilog HDL: A Guide to	Prentice Hall
		Digital Design&Synthesis,	ISBN: 0-13-044911-3(downloadable)
3	Jayaram Bhaskar	A VHDL primer	PTR Prentice Hall

Reference Books for further study

S.	Author	Title of Books	Publishers
No.			
1	Kevin Skahill and	VHDL for Programmable	Pearson Education
	Cyress	Logic	(downloadable)
2	Douglas Perry	VHDL:Programming by	Tata McGraw Hill,2008, India,
	-	example	ISBN 978-0-07-049944-7

(EX617) Advanced Microcontroller

1. AIM:

To understand advanced microcontroller concepts, interface ARM microcontroller to external hardware and program ARM-based systems for various applications

2. COURSE OBJECTIVES / RATIONALE:

Students will be able to:

- 1. Understand advanced microcontroller concepts
- 2. Interface ARM microcontroller to external hardware
- 3. Program ARM-based systems using assembly and embedded C languages

3. PRE-REQUISITES:

Students should have the knowledge of:

- 1. Digital electronics and number systems
- 2. Basic microcontrollers
- 3. Computer programming and assembly language programming

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Peri	iods/V	Veek	Total		Exan	nination	Scheme	
course title	(iı	n hou	rs)	Credits	The	Theory Practical		actical	Total
					Marks		Marks		Marks
(EX617)	\mathbf{L}	T	P	C	TH	TM	TW	PR/OR	
Advanced	3	-	2	5	75	25	25	25	150
Microcontroller									

5. COURSE OUTCOMES:

On successful completion of the course, students will be able to:

- 1. Recall and explain the features of ARM7TDMI microcontroller
- 2. Compare/contrast and select appropriate interface for a given application
- 3. Develop, execute and debug assembly language and embedded C programs for various applications
- 4. Interface ARM7TDMI microcontroller with hardware for various applications

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	igg. ools, tperim	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	3	3	0	0	0	3
CO2	0	3	3	0	0	0	3
CO3	0	3	3	3	3	3	3
CO4	2	3	3	3	3	3	3

Relationship: Low-1 Medium-2 High-3

Mapping Course Outcomes with Program Specific Outcomes

	PSO1	PSO2
CO1	3	0
CO2	3	0
CO3	3	3
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	C	Le
		r	O	vel
				S
1 Introduction to ARM7TDMI	12	7	C	L1,
			01	L2
1.1 ARM7TDMI architecture, block diagram, functional diagram				
1.2 ARM7TDMI register set, 32-bit CPU registers, CPSR and SPSR				
registers				
1.3 ARM7TDMI three-stage pipeline				
1.4 Memory map and memory interfacing, implementation of stack				
1.5 AMBA overview				
2 ARM7TDMI on-chip peripherals	18	12	С	L1.
			01	L2
2.1 Timer – features, pin and register description, timer-handling				
2.2 Serial port – configuration, interfacing PC with microcontroller,				
UART0 and UART1-handling				
2.3 Interrupt – IRQ, FIQ, ISR and interrupt-handling				

0.4.DC 1 '1' ADC ' 4 C ' 4 ADC			1	
2.4 ADC – built-in ADC, interfacing external device to ADC				
2.5 PWM – register description, application				
2.6 Real time clock – RTC features, RTC register description, RTC				
interrupts				
2.7 Flash – flash memory system				
2.8 Watchdog timer				
3 Communication protocols for interfacing	10	6	C O2	L1, L2
3.1 I2C interface – features, architecture, pin and register description,				
applications				
3.2 SPI interface – features, architecture, pin and register description,				
applications				
3.3 Introduction to CAN interface	20	12		T 1
4 ARM7TDMI instruction set and programming	20	13	C	L1
(Students to be evenined on essembly language macrooms that can			O3	L2,
(Students to be examined on assembly language programs that can				L3,
include a combination of any instructions.				L4
Minimum instruction set should be provided to students during the examination)				
4.1 32-bit ARM instruction set				
4.1 52-bit AKM instruction set 4.2 16-bit THUMB instruction set				
4.3 Simple programs using different types of ARM instructions	1 =	10		T 0
5 Interfacing ports to external devices	15	10	C O4	L2, L3
5.1 Hardware interfacing to output devices and programming - LED,				
seven-segment LED display, LCD, motor				
5.2 Hardware interfacing to input devices and programming - Switches,				
matrix keypad				
5.3 Hardware interfacing to sensors and programming - IR, temperature				
sensors				
Total	75	48		

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies, laboratory practical, etc.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to ARM7TDMI	7	12
2	ARM7TDMI on-chip peripherals	12	18
3	Communication protocols for interfacing	6	10
4	ARM7TDMI instruction set and programming	13	20
5	Interfacing ports to external devices	10	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
	Minimum eight to be performed	
1.	Program to add n binary numbers	
2.	Programming of timer for 8-bit PWM Generation	
3.	Programming of timer for variable frequency square wave generation	
4.	Programming of timer for frequency measurement and display on LCD	
5.	Programming of on-chip ADC	
6.	Programming of SPI port for interfacing with ADC MCP3304	
7.	Programming of SPI port for interfacing with DAC MCP4822	
8.	Programming of GPIO port for LED flashing	
9.	Programming of GPIO port for key interface	
10.	Programming of timer for accurate delays	
11.	Programming of UART for interfacing with PC	
	Total	25
No	Class room Assignments	Marks
	Atleast 2 assignments	
No	Tutorial Exercise	Marks
	To be decided by the subject teacher	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Andrew N.SLOSS,	ARM System Developers Guide, Designing	ELSEVIER
	Dominic SYMES	and Optimizing System Software	
	and Chris WRIGHT		
2	Steve Furber	ARM System-on-Chip Architecture, Second	PEARSON
		Edition	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	William Stallings	Operating Systems	Pearson

(EX618) DATA STRUCTURES

1. AIM

- 1. To be aware of different types of data structures and their usages
- 2. To write simple programs implementing stacks, queues and linked lists
- 3. To be able to use different techniques for searching and sorting data

2. COURSE OBJECTIVES:

The students will able to:

- 1. List different types of data structures and understand their usage
- 2. Write programs to implement different types of data structures
- 3. Implement different methods to search and sort data

3. PRE-REQUISITES:

Students should know

- 1. To logically reason and write programs using C
- 2. Concepts of pointers in C and write simple programs using pointers

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Course code & Periods/Week Total Examination Scheme								
course title	(in hours)		Credits	Credits Theory Practical		actical	Total		
					Marks		arks Mark		Marks
(EX618)	L	T	P	C	TH	TM	TW	PR/OR	
DATA	3	-	2	5	75	25	25	25	150
STRUCTURES									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Define different types of data structures and show implementation of stacks and various types of queues
- 2. Develop programs for various types of linked lists
- 3. Evaluate programs which implement various kinds of searches and sorts
- 4. Discuss the various concepts in trees and graphs

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	ngg. ools, tperim atn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	2	1	1	2	3	0
CO2	2	2	1	1	2	3	3
CO3	2	0	0	1	0	2	3
CO4	2	1	0	0	0	0	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	1	2
CO2	3	2
CO3	3	2
CO4	2	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives]		
Unit	M	Th	CO	Le
		r		vel
				S
1 INTRODUCTION TO DATA STRUCTURES	15	8	CO1	L1
1.1 OVERVIEW OF DATA STRUCTURES AND ALGORITHMS				
Definition of data structures, types of data structures, data structure				
operations, algorithms -brute force, divide and conquer, Greedy,				
backtracking, space and time complexity, asymptotic notation				
2 STACKS AND QUEUES	15	10	CO1	L1
2.1 STACKS				
Introduction to stack, stack operations, stack implementation,				
applications of stack, programs using stacks.				
2.2 QUEUES				
Queue basics, queue implementation, basics concepts of circular queues,				
priority queues and double-ended queues, programs using queues.				
3 LINKED LISTS	15	10	CO2	L2
3.1 SINGLY-LINKED LISTS				
Basic concepts and implementation of linked lists, operations – node				
insertion, deletion of anode, searching a node, traversing through the list,				
programs.				
3.2 CIRCULAR-LINKED AND DOUBLY-LINKED LISTS				
Basic concepts of circular-linked lists and doubly- linked lists, programs				
4 SEARCHING AND SORTING	15	10	CO3	L3
4.1 SEARCHING TECHNIQUES				
Basic concepts of searching, linear search and binary search techniques,				
programs				
4.2 SORTING TECHNIQUES				
Basic concepts of bubble sort, selection sort, insertion sort and quick sort				
techniques, programs				

5 TREES AND GRAPHS	15	10	CO4	L4
5.1 TREES				
Basic concepts of trees (NO IMPLEMENTATION), binary tree, binary				
tree representation, traversal, search tree				
5.2 GRAPHS				
Basic concepts of graphs (NO IMPLEMENTATION), undirected and				
directed graphs, graph terminology - degree of vertex, indegree and				
outdegree of a vertex, connected graph, directed acyclic graph (DAG)				
and subgraph. Graph representation – adjacency matrix, adjacency list,				
adjacency matrix. Graph traversal- depth first search, breadth first				
search.				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	INTRODUCTION TO DATA STRUCTURES	8	15
2	STACKS AND QUEUES	10	15
3	LINKED LISTS	10	15
4	SEARCHING AND SORTING	10	15
5	TREES AND GRAPHS	10	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical					
1	Program to implement stacks					
2	Program to implement queues					
3	Program to implement singly-linked lists					
4	Program to implement doubly-linked lists					
5	Program to implement circular-linked lists					
6	Program to implement linear search					
7	Program to implement binary search					
8	Program to implement bubble sorting technique					
9	Program to implement selection sorting technique					
10	Program to implement insertion sorting technique					
11	Program to implement quick sorting technique					
	Total	25				

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers	
1	E. Balagurusamy	Data structures through C	McGraw	Hill
			Education	
2	Yeshwant Kanetkar	Data structures through C	BPB Publications	
3	Seymour Lipschutz	Data structures with C (Schaum's	McGraw	Hill
		outline series)	Education	

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	S.K. Srivastava	Data structures through C in depth	BPB publications
2	Reema Thareja	Data structures using C	Oxford
3	Sahni Horowitz	Fundamentals of data structures in C	Universities Press

SEMESTER VI

(EX601) Audio & VideoEngineering

1. AIM

- 1. To enable the students to understand the concept of sound & video recording.
- 2. To enable them to analyze composite video signal B/W as well as colour & VSB modulation.
- 3. To enable them to understand performance of B/W & colour picture tube, TV transmitter & receiver.
- 4. To introduce LCD & LED TV block diagrams.
- 5. To understand the performance of HDTV, CCTV. DTH etc.

2. COURSE OBJECTIVES:

The course will introduce the students with working principle, block diagrams of sound transducers, B/W &colour TV, LCD, LED TV, CCTV, DTH, HDTV, cable TV so that they will be able to install, test & troubleshoot simple faults in audio & Video equipments.

2. PRE-REQUISITES:

Students should know

- 1 .Electronic Circuits
- 2. Analog Communication

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course code &		Periods/Week			Total	Total Examination Scheme				
course ti	tle	(iı	n hou	rs)	Credits	Theory Marks				Total Marks
(EX-601)		L	T	P	С	TH	TM	TW	PR/OR	
Audio & Engineering	Video	3	-	2	5	75	25	25	-	125

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand various concepts and characteristics of Audio Transducers.
- 2 Describe applications of TV such as CCTV,CATV,HDTV,DTV,DTH,LCD & LED TV.
- 3.Differentiate between various audio & Video recorder formats.
- 4. Analyze and compare B/W & colour TV system

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	0	0	3	0	0	3
CO2	2	1	0	3	0	0	0
CO3	2	0	2	0	0	3	3
CO4	2	1	2	3	0	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th r	C O	Le vel s
1 SOUND TRANSDUCERS	15	9	1	L1, L2
1.1 Characteristics: sensitivity, signal to noise ratio, directivity, output impedance, distortion and frequency response				
1.2 Requisites of a good microphone. Construction, functioning, features, and applications of microphones: Crystal, Moving coil. And Electret.				
1.3 LOUD SPEAKERS: Characteristics of loudspeaker Working principles of horn type and electrodynamic type loudspeaker Baffles(Finite,infinite ,bassreflex & acoustic labryinth) &Enclosure, Multiway speaker system (Woofers & Tweeters), surround sound system(block diagram)				
2 TV COMMUNICATION SYSTEM	18	12	4	L1, L2
2.1 TV PICTURE ANALYSIS: -Frequency range of various VHF/UHF band, Aspect ratio, Persistence of vision.				

2.2 Scanning: Need, Sequential scanning, flicker, interlaced scanning, interlace error, interlace error calculation, horizontal scanning,				L4
vertical scanning				
2.3 Composite Video Signal (CVS) .need for synchronization, Horizontal sync and blanking pulses, Vertical sync and blanking, (No equalizing pulses).	1			
2.4 TV Camera tube: Characteristics of camera tube, construction and working of vidicon				
2.5 VSB Modulation				
3 COLOUR TELEVISION	18	10	4	L1, L2
3.1Compatibility of color TV system with monochrome system.				
3.2 Additive and subtracting mixing of colors, luminance, Hue and Saturation				
3.3 Block diagram of video camera and its explaination				
3.4 Construction and working principles of Trinitron picture tube.				
3.5 Colour signal transmission, signal modulation, transmission,				
bandwidth, weighing factors & chrominance signal				
3.6 Block diagram of PAL TV transmitter & receiver.				
4 TYPES OF TV & APPLICATIONS	15	11	3	L1, L2
a. Introduction to DIGITAL TV (DTV):Advantages (picture quality,special features,special effects,high reliability) Digital Video production & Reproduction (Block Diagram) Digital picture transmission & Reception (Block Diagram) Picture in picture feature in DIGITAL TV Principles of working HDTV				
4.2 Principle of working, features& Block diagram of Cable TV, PAY TV THROUGH CABLE, CCTV and DTH.				
4.3 LCD TV & LED TV :Introduction & block diagram				
4.4 Night vision camera				
5 VIDEO RECORDING & PRODUCTION	9	6	3	L1, L2
5.1 Comparision VCD verses DVD				L4
5.2 DVD formats, recording and playback on DVD				
5.3 Introduction to BLU-RAY DISC, Block diagram BD player & operation				
5.4 Comparision of BLU-RAY &DVD				L4
Total	75	48		1 1

8. COURSE DELIVERY:

The course will be delivered through lectures, class room interactions, exercises and case studies.

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Sound Transducers	9	15
2	TV Communication system	12	18
3	Colour Television	10	18
4	Types of TV & Applications	11	15
5	Video Recording & Production	6	9
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1	Test performance of pattern generator.	
2	Compare composite video signal (B/W) of different patterns	
3	Test performance of picture tube (B/W).	
4	Compare composite video signal (colour) of different patterns.	
5	. Test performance of TV receiver controls	
6	Test performance of picture tube (colour)	
7	Tracing of different sections of TV receiver	
8	Location of faults in the different sections of TV receiver	
9	. Study of a TV cable network system through internet	
10	Study of a CCTV system through internet	
No	Class room Assignments	Marks
1	At least 02 assignments	
2		
No	Tutorial Exercise	Marks
1		
2		
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	R.R Gulati	Modern Television Practice Principles, Technology and Servicing 2/Ed	New age Internationl Publisher, New Delhi ISBN- 9788122413601
2	. R.R Gulati	Composite Satellite & cable Television	New age Internationl Publisher, New Delhi ISBN- 9788122413601
3	A.M.Dhake	TV and Video Engineering	TMH Publication, New Delhi ISBN: 9780074601051
4	Gordon J King	Audio Handbook	Newnes-Butterworth ISBN- 13: 9780408001502
5	Maini	Colour T.V. and Video Technology	PHI Publications. New Delhi
6	K.D. Desai,	Video Cassette Recorders	Jeevan Deep Prakashan, Mumbai, 2nd, 1988
7	Ibrahim, K.F. Newnes	Guide to Television and Video Technology, Fourth Edition	Newnes-Butterworth ISBN-13: 9780750681650
8	John D. Lenk	Complete Guide To Laser Video Disc	PHI Publications. New Delhi, 2nd, 1995
9	R.G.Gupta	Television Engineering and video systems . second edition	second edition ,MH New Delhi
10	R.G.Gupta	Audio &Video Systems	TataMc-GrawHill education, Delhi.
10	LCD LED Screen Panel Repair Guide	http://lcdrepairguide.com/screen-repair/	

(CC602) Business Communication

1. AIM: To enable students to communicate effectively in oral and written form at workplace.

2. COURSE OBJECTIVES:

The students will able to:

- 1.use speaking, writing and presentation skills to communicate effectively.
- 2. develop business etiquettes, manners, grooming and improve personal appearance
- 3. improve non verbal forms of communication.
- 3. PRE-REQUISITES: (GC101) Communication skills

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
Course coo	le &	Peri	ods/V	Veek	Total Examination Scheme					
course ti	tle	(iı	n houi	rs)	Credits	Theory Marks		Practical Marks		Total Marks
(CC602) Bu	siness	L	T	P	C	TH	TM	TW PR/OR		
Communic	ation	-	-	2	2	-	-	50	50	100

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. understand the principles of effective communication
- 2. use the principles of communication effectively in the corporate environment
- 3. analyse and organize information for effective communication
- 4. develop soft skills in order to adapt to the changing and competitive corporate work environment.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopmen t of Solutions	Engg. Tools, Experiment atn& Tooring	Engg. Practices for Society,Sus tainability	Project Manageme nt	Life -long Learning
CO1	1	1	1	1	1	2	3
CO2	2	2	2	1	2	2	3
CO3	2	2	2	1	2	2	3
CO4	2	2	1	1	2	3	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit		Th r	CO	levels
1 COMMUNICATION SKILLS AT WORKPLACE		04		
1.1 Principles of communication in business Importance of communication in a business organization, types of communication(formal and informal Internal and External Communication), Channels of communication: Vertical, Horizontal, Diagonal, Grapevine			1	
1.2 Modern Office technology for communication: email communication and sending text (etiquettes, components, tips for writing effective emails, spellcheck) ,internet and use of social media for work (to communicate, search for information about suppliers, specifications, networking, quick feedback ,e-commerce, video conferencing)			1,2,3,4	
2 SEMINARS		06		
2.1 Organization of seminars and workshops Organizers role: planning, objectives, topic selection, planning the date			1,2,3,4	

,time ,venue , creating event organization material : creating facebook page ,WatsApp group, invitations , advertisement on pamphlet , hand-outs ,signage ,name badges, registration form, press note, inviting key note speaker, schedule. 2.2 Presentation Speakers role:Gathering relevant material, organization of the material, knowing the occasion and audience,preparing handouts for distribution, time management, ,interaction with audience, non verbal communication. (Checklist of significant aspects of oral presentation to be provided)		1,2,3,4
2.3 Role of audience		1,2,3,4
Audience's role: Listening effectively and asking relevant questions,		
note taking 3 TECHNICAL WRITING	10	
3.1 Reports	10	1,2,3,4
Understanding objective report writing, types of reports, parts of a formal report, illustrations inspection reports: procedure and format ,Project Report		
3.2 Business letters Sales letters: parts of sales letter complaint letters: elements of a complaint letter adjustment letters: elements of an adjustment letter		1,2,3,4
3.3 Tenders procedure, Preparation, Types of tenders, Single tender, limited tender, Open tenders, government e tender, structure of a tender document, tender notice, terms and conditions, payment details, specification, documents to be submitted, drafting advertisement for tender.		1,2,3
3.4 Generic notices, notice for meetings :purpose, format of notice for meeting, agenda, quorum and writing minutes		1,2,3,4
4 JOB INTERVIEWS	06	
4.1 Job application and resume draft job application and resume, draft letter of acceptance and cold contact letter		1,2,4
4. 2 Job interviews preparing for job interview, guidelines on facing job interviews, mock interviews		1,2,4
5 SOFT SKILLS	06	
5.1Business etiquettes		
Importance of business etiquettes and manners, Tips for good business		

etiquettes			1,2,4	
5.2 Non verbal Communication			1,2,4	
grooming, personal appearance, hygiene, deportment and body language				
5.3 Interpersonal skills				
Leadership skills, team work, active listening				
			1,2,3,4	
5.4 Critical thinking				
How to improve critical thinking, tips for critical thinking			1224	
			1,2,3,4	
Total	50	32	-	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit		Number of HOURS	Marks
1	COMMUNICATION AT WORKPLACE		04	
2	SEMINARS		06	
3	TECHNICAL WRITING		10	
4	JOB INTERVIEWS		06	
5	SOFT SKILLS		06	
		Total	32	50

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks 50
	Practical Title	
1.	Modern office technology	
2.	Seminar	
3.	Technical writing	
4.	Job interviews	
5	Soft skills	
No	Class room Assignments	
1	Email communication	
2	Power point presentation	
3.	drafting seminar invites	

4.	Drafting hand outs for seminars	
5	Drafting sales letter	
6	Drafting complaint letters	
7	Drafting adjustment letters	
8	Drafting tender notice	
9.	Filling maintenance reports	
10.	Drafting inspection reports	
11	Drafting abstract	
12	Drafting notice for meetings	
13	Drafting agenda of meetings	
14	Drafting minutes of meeting	
15	Drafting resume and job application	
16	Drafting letter of acceptance	
17	Drafting cold contact cover letter	
18	Group discussions	
19	Debates	
20	Group presentations	

11. LEARNING RESOURCES

Reference books

S. No.	Author	Title of Books	Publishers
1	P.Prasad, Rajendra	The functional aspects of	s.k. kataria &sons
	k. Sharma	communication skills	
2	Pal & Rorualling	Essentials of business	Sultan chand & sons
		communication	
3	Grount Taylor	English conversation practice	Tata MCgraw Hill
4	R.C. Sharma &	Business Correspondence & report	Tata MCgraw Hill
	Krishna Mohan	writing	_

(EX 602) Industrial Electronics

1. AIM

To explore different areas of process controls of the industry where electronic circuits can replace the conventional methods, for efficiency, ease of method and economic advantages.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Understand industrial requirements for controlling different processes
- 2. Applications of different components and circuits using these components.

3. PRE-REQUISITES:

Students should know

- 1. Working of thyristors, Timer IC 555
- 2. Amplifiers and Oscillator circuits

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	iods/V	Veek	Total	Examination Scheme				
course title	(iı	n hou	rs)	Credits	The Ma	•		actical Iarks	Total Marks
(EX602)	L	T	P	С	TH	TM	TW	PR/OR	
Industrial Electronics	3	-	2	5	75	25	25	-	125

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain different industrial, ultrasonics, high frequency heating process control circuits
- 2. Explain use of electronics switches to industrial circuits and in speed control of motors
- 3 Apply knowledge of Timers for different industrial circuits and resources used in control engineering
- 4. Analyze output for different variables.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	2	3	2	3	3	3
CO2	3	3	2	2	3	2	3
CO3	3	3	2	3	3	2	3
CO4	3	3	3	2	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	3

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks	Thr = Teaching hours	CO = Course Objectives	L - I	Levels		
Unit			M	Thr	CO	LS
1 Industrial circuits			22	13	1,2,3, 4	1,2
	hyristors : Burglar ala ller using thermosta					
Emergency light,	thermistor controlle	ed heater, power				
flasher,automatic Stre	eet light control using I	LDR				
	esign Astable mutivibra	* '				4
specific pulse width	Design of monostab	ie multiviorator for				
	555 Timer : Bistable	·				1,2,3
	level controller, photocer using tuned oscillato					
2 Ultrasonics	09	06	1,2,3	L1,2		
2.1 Wavelength and v	velocity in air, liquid an					
2.2 Piezoelectric gene	eration of ultrasonic wa	ives				

2.3 Application : Flaw detection, Flow meter				
List of applications in Medical field 2.4 Ultrasound welding: Principle, advantages, disadvantages	-			3
2.4 Ottrasound welding . I Thielpie, advantages, disadvantages				3
3 High Frequency heating	14	9	1,2	L1,2
3.1 Induction heating: principle, Features, skin effect, advantages, disadvantages, List of applications in industry Applications in detail: surface hardening, brazing				
3.2 Dielectric heating : principle, features, generation, advantages, disadvantages, Enlist applications				
3.3 comparison : dielectric and induction heating				
4 Electric motor speed control	15	10	1,2,3,	L1,2
4.1 DC motor: Operating principle, types, Dc shunt motor: concept of back emf, equivalent diagram, simple numerical to calculate back emf, relationship between speed, voltage, current, torque, characteristics of shunt motor: torque, current, speed.				
4.2 Numerical on speed calculations for variable flux, torque, current, terminal voltage.				4
4.2 Speed control of Dc motor using thyristors: advantages, speed control using full wave SCR. Speed control and regulation by tachometer method: for increased and decreased load.				1,2
4.4 Simple calculations between speed, voltage and firing angle.				3
4.3 Speed control of AC motors : Single phase AC series motor speed control using SCR				1,2
5 Process control Engg	15	10	1,2,3	1,2
5.1 Process control: Basic objective, Simple block diagram Pressure control using Pneumatic amplifier: Definition of Pneumatic amplifier, basic components, block diagram and pressure control Liquid flow control using flow control valve Mechanical movement control using Solenoid coil				
5.2 concept of servomechanism, block diagram DC servo speed control(separately excited) :Field controlled method: advantages and disadvantages armature controlled method, comparison between above two methods				

Speed control of AC servo motor			
5.3 Stepper motor: Basic principle of operation of 4 position Synchros: definition Synchro Transmitter and Receiver			3
Total	75	-	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Industrial circuits	13	22
2	Ultrasonic	06	09
3	High Frequency heating	09	14
4	Electric motor speed control	10	15
5	Process control Engineering	10	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS (Any 8)

No	Practical		Marks
1.	Assemble and Test burglar alarm		
2	Assemble and test smoke detector		
3	Assemble test power flasher		
4	Assemble and test photocounter using 555		
5	Assemble and test water level indicator		
6	Assemble and test water level controller		
7	Test Induction heating		
8	Test dielectric heating		
9	Test motor speed control, using thyristor		
10	Test synchro transmitter and receiver control		
11	Flaw detection using ultrasound waves		
		TOTAL	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Rao, Sutrave	Industrial Electronics	Tata McGraw Hill
2	S.K Bhattacharya, S. Chatterjee	Industrial Electronics and control	Tata McGraw Hill
3	Curties Johnson	Process control Instrumentation	Pearson Education
4	B.L. Theraja	Electrical Engg	S. Chand

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	Chute and Chute	Industrial Electronics	Tata McGraw Hill
2	J.D. Ryder	Electronics Engg	Prentice Hall India
3	Bimbhra P.S.	Power electronics	Khanna publishers

(EX603) PROJECT

1. AIM

This is intended to integrate several skills and competencies which have been developed in the students during his/her course of study and gets manifested through this project.

2. COURSE OBJECTIVES:

The students will able to:

- i. Cultivate the systematic methodology for problem solving using acquired technical knowledge & skills, and to enhance the generic skills & professional skills
- ii. Develop problem solving, analysis, synthesis and evaluation skills.
- iii. Encourage teamwork.
- iv. Improve students' communication skills through project reports and presentations of their work.

3. PRE-REQUISITES:

- i. Basic Engineering Skills
- ii. Electronics & allied Courses

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	ods/V	Veek	Total	Examination Scheme				
course title	(iı	n hour	rs)	Credits	The	ory	Practical		Total
					Mai	rks	Marks		Marks
(EX 603)	L	T	P	C	TH	TM	TW	PR/OR	
PROJECT	-	-	08	08	-	-	100	50	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Identify, analyze & define the problem
- 2. Apply acquired knowledge of engineering to execute solution
- 3. Develop leadership skills & teamwork to design & execute hardware & related software
- 4. Compile the relevant data in the form of a report and defend the project

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Devlopment of Solutions	Engg. Tools, Experimentatn & Testing	Engg. Practices for Society, Sustain ability & Environment	Project Management	Life -long Learning
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	2	-	-	-	-	3	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

The following are some of the suggested activities which the student has to undertake (which may slightly differ depending on the project chosen) during the project work. In so doing some process related and project related skills need to be evaluated.

- Selection/Identification of project Work by market survey/industrial survey.
- Project Proposal
- Market survey for product sales & economic viability of product (for entrepreneurship)
- Costing of the project/product i) Capital costs ii) Material & production cost
- Design of project to obtain desired output.
- Procurement of components & equivalents.
- Working skill of fabrication.
- Testing of product
 - i. Drafting
 - ii. Sketching
 - iii. Layout
 - iv. Presentation

_		~ —				
Г	\: waata	$\sim 4 \text{ T} \sim$	abasaal	Education.	CaaCtat	
	mreciorale	OI I E	cnnicai	rancanon.	1402 3121	
_	m ccwiate	OIIC	CHILLCH	Luucuu oni	uva via	

ELECTIVES – SEMESTER VI

(EX619) Data Communications

- 1. AIM
- 1. To introduce students to Data Communication through a network.
- 2. COURSE OBJECTIVES:

The students will able to:

- 1. To understand data flow through a computer network.
- 3. PRE-REQUISITES:

Students should know

- 1. Analog and Digital Communication Techniques.
- 4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	iods/W	/eek	Total		Exan	nination		
course title	(i	n houi	rs)	Credits	The	ory	Practical		Total
					Marks		Marks		Marks
(EX619)	L	T	P	С	TH	TM	TW	PR/OR	
Data	3	-	2	5	75	25	25	-	125
Communications									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Describe various Protocols for Data link layer.
- 2. Identify Components of computer communication and types of Computer Networks.
- 3. Analyse functions of various layers in the OSI model of a computer Network.
- 4. Interpret various errors and their control in a network.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	ngg. ools, tperima	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	1	0	1	0	2	3
CO2	2	1	0	1	0	2	3
CO3	2	1	0	1	0	2	3
CO4	2	2	0	1	0	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	1
CO2	2	1
CO3	2	1
CO4	2	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	CO	Levels
1 Introduction to Data Communication and Computer Networks	15	10	CO2	L1,L2
1.1 Components of Data Communication system				
Five major elements of the system and their meaning.				
1.2 Types of Data				
Various types of data(Picture, Video, Audio etc.) and various types				
of data signals (Analog and digital).				
1.3 Direction of Data Flow				
Simplex, half and full Duplex.				
1.4Modulation techniques used				
List of Analog and Digital modulation techniques, Quadrature				
Phase Shift keying and QAM system working.				
1.5Type of Connection				
Point to point and multipoint.				
1.6Topologies				
Mesh, Star, Bus, and Ring topologies and their comparisons.				
1.7Categories of Networks				
Brief description of LAN, WAN, MAN.				
1.8 Protocols and Standards				
Meaning and key elements of protocol, Important standard				
organizations.				
2 Network Layers (No Mathematical treatment)	10	07	CO3	L1,L2

2.1 Internet Model				
Organization and Functions of Physical, Data link, Network,				
Transport and Application layers.				
2.2 OSI Model				
Functions of Session and Presentation layers, Data flow through all				
layers.				
2.3 Data Transmission Modes				L3,L4
Parallel, Serial, Synchronous and Asynchronous.				,
3 Error Detection and Correction	12	06	CO4	L1,L2
3.1 Types of Errors				,
Single bit error, Burst Error.				
3.2 Detection of Error				
Redundancy, Parity Check, CRC, Checksum.				
3.3 Correction of Error				L3,L4
Forward Error Correction, Hamming Code, Burst Error				20,21
correction.				
4 Data Link Control & Protocol	27	18	CO1	L1,L2
4.1 Flow and Error Control		10	001	21,22
Flow and Error control meaning and Operation of error control				
mechanisms - Stop-and-Wait ARQ, Go-Back-N ARQ, and				
Selective Repeat ARQ.				
4.2 Data Link Protocol				
HDLC Protocol- Types of frames, Frame formats of I frame, S				
frame and U frame, Data transparency.				
4.3 Point – to – Point Protocol				
Meaning, services provided, frame format and transition states.				
4.4 Multiple Access Protocol				
Random Access meaning, CSMA/CD procedure and CSMA/CA				
procedure.				
Controlled Access meaning and methods.				
5 Local Area Networks	10	07	CO2	L1,L2
5.1 Wired LAN/ Ethernet	10	0,	002	21,22
Main features of Traditional Ethernet, Fast Ethernet and Gigabit				
Ethernet.				
5.2 Wireless LAN				
Main features of IEEE 802.11 and Bluetooth.				
5.3 Connecting Devices, backbone Networks and VLANs				
Repeaters, Hubs and Bridges, Bus and Star as backbone networks				
and main features of Virtual LANs.				
Total	75	48		
Total	, ,	1.0	I	

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of	
		lectures	
1	Introduction to Data Communication and Computer Networks	10	15
2	Network Layers	07	10
3	Error Detection and Correction	06	12
4	Data Link Control & Protocol	18	27
5	Local Area Networks	07	11
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Study of different types of transmission media.	
2.	Study and analysis of QPSK Modulation.	
3.	Study and analysis of QAM Modulation.	
4	Study of Serial Interface using RS-232.	
5.	Study of Pc to Pc or PC to Printer Communication using parallel port.	
6.	Study of LAN using Bus topology.	
7.	Study of LAN using Star topology.	
8.	To study/configure a MODEM for Computer to Internet connection	
9.	To configure a hub/switch	
10.	Study interconnection of cables for data communication.	
11.	Study Pc to PC communication using Ethernet LAN	
12.	Study Pc to PC communication using Wireless LAN	
	Total	25
No	Class room Assignments	Marks
1	At least 02 assignments on relevant topics	
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books			Publishers		
1	Behrouz A Forouzan		Communications	and	Tata	McGraw-hill	
		Networks 3 rd Edition			publishing		

(EX620) Mobile Communication

1. AIM

- i. To make students aware about the evolution of cellular communication
- ii. To provide basic knowledge of various concepts & processes used in cellular communication
- iii. To introduce students to the features & services provided by modern cellular systems

2. COURSE OBJECTIVES:

The students will able to:

- i. Understand the basic cellular communication concepts
- ii. Describe various features & services provided by GSM & CDMA
- iii. Understand features of modern cellular system.

3. PRE-REQUISITES:

i. Communication Engineering

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Periods/Week		Total	Examination Scheme					
course title	(iı	n hou	rs)	Credits	The	ory	Pra	actical	Total
					Mai	rks	M	[arks	Marks
(EX620)	L	T	P	С	TH	TM	TW	PR/OR	
Mobile	3	-	2	5	75	25	25	25	150
Communication									

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand various concepts, components & processes used in cellular communication
- 2. Classify & compare various multiple access techniques used in cellular communication
- 3 Compare & Contrast various features & concepts of GSM & CDMA
- 4. Analyze features of various modern cellular systems

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	igg. ools, perimatn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	2	2	2	-	1	2	3
CO2	3	2	2	-	-	1	2
CO3	2	2	2	1	1	2	3
CO4	2	3	1	-	2	-	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	3	1
CO3	3	1
CO4	3	1

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th	CO	Level
		r		S
1 Introduction to Cellular Communication Systems	24	16	CO1	L1,L2
1.1 Need of Mobile telephone system, Conventional Mobile telephone				
system & its limitations				
1.2 Analog & digital cellular system : Brief comparison				
1.3 A basic cellular system: Diagram & operation of each subsystem				
1.4 Cellular communication Concepts:				
Cell, Cell geometry				
• Frequency reuse concept, frequency reuse schemes, frequency				L3
reuse distance				
• Co-channel interference & adjacent channel				
interference(definitions)				
Co-channel reduction factor				L3
• Cell splitting: need & types, sectoring, segmentation &				
dualization				
Handoff: need, types (based on signal strength and C/I				
ratio),delayed handoff, power difference handoff, mobile assisted				
handoff, soft handoff & Intersystem handoff.(No Mathematical				
Treatment)				
2 Components and Working Principle of Cellular Communication	15	09	CO1	L1,L2

	1	1		
Systems			&	
2.1. Commonants of callular communication systems			CO2	
2.1 Components of cellular communication system:				
Base station, MTSO, Mobile handset (Block Diagram Operation).				
2.2 Processes: Logon & Monitoring Process in cellular system				
2.3 Routing cellular calls: mobile to land line, landline to mobile, mobile to mobile & handoff mechanism.				
2.4 Frequency spectrum utilization, Setup Channels: Access & Paging Channels				
2.5 Multiple access techniques: Basic concepts & features of				
FDMA,TDMA & CDMA				
3 Digital Cellular system-GSM	09	06	CO3	L1,L2
3.1 Global system for mobile(GSM):				L4
Services & Features				
Architecture & Operation of each subsystem				
• Frequency channels(TCHs,CCHs in brief)				
 Location update management 				
Authentication & encryption				
4 Digital Cellular system-CDMA	09	06	CO3	L1,L2
4.1 CDMA cellular system:	0,	00	003	L4
Services & Features				
 Radio aspects, forward channel structure and reverse channel 				
structure				
Power control				
Soft handoff				
Authentication, encryption and privacy Modern collular systems.	18	11	CO4	1112
5 Modern cellular systems 5 1 Limitations of 2G Collular System	10	11	CO4	L1,L2
5.1 Limitations of 2G Cellular System 5.2 Features of 2.5G Cellular system. Features of EDGE and CRRS.				T 4
5.2 Features of 2.5G Cellular system, Features of EDGE and GPRS				L4
systems 5.2.2G technology networks. Factures of				
5.3 3G technology networks: Features of				
• CDMA-2000				
WCDMA(UMTS). WE I WILLIAM WE WILLIAM WE I WILLIAM WE WILLIA				
Wireless Local area network(WLAN)				
Bluetooth & Personal Area Networks(PANS) A Formula (Control of the Control of the Cont				T 4
5.4 Features of 4G cellular system, Comparison of 3G & 4G cellular				L4
system				
5.5 Overview of 5G cellular system:				
Performance Targets H. C.				
Usage Scenario: Enhanced Mobile Broadband (eMBB),Ultra Usage Scenario: Enhanced Mobile Broadband (eMBB),Ultra				
Reliable Low Latency Communications (URLLC), Massive				
Machine Type Communications (mMTC)				
Advantages of 5G To a 1		40		
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction to Cellular Communication Systems	16	24
2	Components and Working Principle of Cellular Communication Systems	09	15
3	Digital Cellular system-GSM	06	09
4	Digital Cellular system-CDMA	06	09
5	Modern cellular systems	11	18
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Study the features, specification and block diagram operation of mobile	
	handset	
2.	Identify various sections of a mobile handset (hardware)	
3.	Measure/Observe signals at different sections of Mobile Phone	
4.	Identify various hardware faults in a mobile handset	
5.	Comparision of GSM & CDMA technology	
6.	Study of merits & limitations of Bluetooth technology	
7.	Study of merits & limitations of Wi-Fi(WLAN)	
8.	Transfer of data using Bluetooth & Wi-Fi	
9.	Visit to GSM /CDMA Base station (Optional)	
	Total	25
No	Class room Assignments	Marks
1	Atleast 2 assignments	
•••		
No	Tutorial Exercise	Marks
1		
	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers		
1	William Lee	Mobile cellular telecommunications	McGraw Hill		
			ISBN 978-0-07-		
			063599-9		
2	Theodore s.	Wireless communications-	Prentice Hall of India		
	Rappaport	Principles	ISBN 81-203-2381-5		
		& Practice			
3	Raj Pandya	Mobile & Personal Communication	Prentice Hall of India		
		systems & services	ISBN 81-203-1710-6		
4	Wayne Tomasi	Advanced Electronic	Pearson Education		
		Communication systems	ISBN 81-297-0107-3		

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	T.G.palanivelu &	Wireless & Mobile Communication	PHI learning pvt ltd
	R.Nakkeeran		ISBN 978-81-203-
			3607-0
2	Rishabh Anand	Wireless Communication	S.Chand &company
			Ltd.
			ISBN 81-219-4055-9

Internet and Web Resources

1	https://en.wikipedia.org/wiki/5G
2	https://www.zdnet.com/article/what-is-5g-everything-you-need-to-know/
3	https://pdfs.semanticscholar.org/b2ab/1c503c76a4b3870feaec5c3a6a157972a555.pdf

(EX622) Digital Signal Processing

- 1. AIM:-To study signal representation in time and frequency domain,DFT,Z transform and design of digital filters.
- 2. COURSE OBJECTIVES :To learn different types of discrete signals ,its classification and representation.Introduce Z transforms,DFT,FFT and study FIR and IIR filters.

The students will able to:

- 1. Analyze given signal or system using tool such as Z transform and DFT
- 2.learn properties of signal and systems
- 3.process the signal to make it useful.
- **3. PRE-REQUISITES:**
- 1. linear algebra, calculus and trigonometry
- 2. knowledge of complex numbers
- 3. programming knowledge
- 4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Periods/Week		Total		Exam	inatior	Scheme		
course title	(iı	n houi	rs)	Credits	The Mai	·		actical arks	Total Marks
(EX622)	L	T	P	С	TH	TM	TW	PR/OR	
Digital Signal Processing	3	-	2	5	75	25	25	25	150

5.COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand Fourier transform, Discrete Fourier Transform and Fast Fourier Transform with redards to DSP
- 2. Interpret, represent and process different types of digital signals and systems and their properties.
- 3 Make use of Z transform technique for ROC.
- 4. Ability to analyze DSP systems like FIR and IIR digital filters.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	2	2	1	2	3	3
CO2	3	3	2	1	2	3	3
CO3	3	3	2	2	2	3	3
CO4	3	3	3	2	2	3	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2

7. DETAILED COURSE CONTENTS / MICRO-LESSON PLAN

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Th r	CO	Le vel s
Introduction	6	5	2	1,2
 1.1 Basic components of DSP system Advantages of DSP Digital Signal processors Importance of Digital signal processing 				
1.2 Define- signal,analog signal,discrete signal,continous time signal, discrete time signal,digital signals,Quantization levels				
2 Discrete Time signals and Systems	24	15	2	1,2
2.1 Representation of Discrete Time signals-Functional, Graphical				
2.2 Define Standard discrete time signals -Unit step sequence, Unit Ramp Sequence, Unit Impulse sequence, Sinusoidal sequence. Functional and graphical representation of the above mentioned signals				

2.3 Classification of Discrete time signals (only definition) - Deterministic and nondeterministic signals, Periodic and Aperiodic Signals, Symmetric and antisymmetric signals, Causal and noncausal signals, Energy and power signals.(No problem solving)				
2.4 Mathematical operations on Discrete time signals (with numerals)-Scaling(Amplitude and time), Folding, shifting(right shift and left shift), addition and multiplication.				3
2.5 Explain Discrete time system, LTI and Impulse response.				
2.6 Classification of Discrete time signals (only definition)-Static and dynamic systems, Time invariant and variant systems, Linear and non Linear, Causal and non causal, stable and unstable FIR and IIR, Recursive and nonrecursive 2.7 Discrete or linear Convolution and its procedure.				
3 Z transforms	18	12	2,3	1,2
3.1 Define Z-Transform, one-sided and two-sided Z-transform, Inverse Z-Transform (no proof only equations)				,,,,
3.2 ROC Definition, study of ROC for- finite duration right-sided(causal) signal, finite duration left-sided (anticausal) signal, finite duration two-sided (noncausal) signal				
3.2 Properties of Z-transform(only proof, no problem solving) Linearity ,shifting, one sided, time reversal, convolution theorem				
3.3 Advantages of Z-Transform 4 Discrete Fourier Transform(DFT) and Fast Fourier	15	8	1,2	1,2
Transform(FFT) 4.1 Definition of DFT, inverse DFT((no proof only equations)	13	8	1,2	1,2
4.2 Properties of DFT(only proof, no problem solving)- Linearity, Periodicity, Time reversal, circular time shift				
 4.3 Definition –FFT Radix-2 DIT FFT-explanation of basic computation and butterfly diagram Radix-2 DIF FFT-explanation of basic computation and butterfly diagram 				
diagramDifferences and similarities of DIT and DIF Radix-2 FFT				

5 FIR and IIR filters	12	8	1,4	1,2
5.1 FIR filters				
 Definition ,advantages and Disadvantages 				
 Define window, state different types of window sequences, procedure for designing FIR filter using windows 				
 Define window, state different types of window sequences, procedure for designing FIR filter using windows 				
5.2 IIR Filters-				
 IIR filters- Definition ,advantages and Disadvantages 				
 Comparison of analog and digital filters 				
 Frequency response of analog and digital IIR filter 				
Properties of butterworth and chebychev filters				
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
	Practicals to be performed by using signal processing toolbox		
1	Introduction to toolbox and its various instructions		
2	Program to generate unit step, unit ramp, Unit impulse ,sinusoidal		
3	Program to study basic operation on Discrete time signal-amplitude scaling, shifting		
4	Program for linear convolution		
5	Program to perform Z transform for the given sequence		
6	Program to perform Discrete Fourier Transform for the given sequence		
7	Program to design FIR filter using rectangular window		
8	Program to perform Radix-2 DIT FFT and Radix-2 DIF FFT		
	Total	64	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Practical Title	
1.	Fractical Title	
	Total	25
No	Class room Assignments	Marks
1	At least 02 assignemnts	
2		
•••		
No	Tutorial Exercise	Marks
	T.4.1	25
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Nagoor Kani	Digital Signal Processing	Tata McGraw Hill, India, ISBN:978-0- 07-008665-4
2	Anand Kumar	Digital Signal Processing	PHI Learning ISBN-978-81-203- 4620-8 (downloadable)

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	V K Khanna	Digital Signal Processing	S Chand
2	Oppenheim & Schafer	Digital Signal Processing	Pearsons Education

EX624 CONSUMER ELECTRONICS

1.AIM:

- 1. Toknow penetration of electronics applications in various fields of society.
- 2. Appreciate influence of electronics in consumer, entertainment, automobile applications.

2. COURSE OBJECTIVES:

- Many of the domestic and office gadgets at home and around are electronically controlled. This
 course on Consumer Electronics will enable students to understand the underlying working
 principles of many of the electronic devices used in the consumer industry. The student will be able
 to apply this knowledge to carry out maintenance, fault finding, repairs and servicing of such
 devices along with laboratory equipments
- The students will able to
 - 1. To provide fundamental knowledge about the various gadgets of Consumer electronics

3. PRE-REQUISITES:

Students should know

- 1. Concepts of Basic Electronics
- 2. Concepts of Electronic Instrumentation
- 3. Concept of communication and computers

4. TEACHING AND EXAMINATION SCHEME

Semester V									
Course code &	Per	iods/V	Veek	Total		Exan	ination	1 Scheme	
course title	(i	n hou	rs)	Credits	The	ory	Pra	actical	Total
					Mai	rks	M	[arks	Marks
		I.							
EX624 Consumer	L	T	P	C	TH	TM	TW	PR/OR	
Electronics	03	-	02	05	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the electronics engineering concepts used in consumer electronics
- 2. Identify the working of various consumer electronic devices used as office gadgets
- 3 Examine the working of various consumer electronic devices such as washing machine, AC's, Microwave ovens with sketches of the block diagram.
- 4. Discuss the need of preventive maintenance and safety measures in various electronic appliances

.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentat ion& Testing	Engg. Practices for Society, Sustainabilit y & &	Project Management	Life -long Learning
CO1	2	2	2	0	0	0	3
CO2	2	1	2	2	2	0	3
CO3	2	0	1	2	2	2	3
CO4	3	3	3	3	2	0	3

Relationship : Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

M =	Thr =	CO = Course Objectives				
Marks	Teaching					
	hours					
Unit			M	Th	CO	levels
				r		
1 Electronically controlled low power Home appliances				10	CO1,CO 2	L1,L2
1.1 Digital C	1.1 Digital Clock:- Detailed block diagram, working					
1.2 Digital	Calculator:- S	tructure of Calculator, Block				
diagram of C	alculator, Worki	ng				
1.3 Digital	Thermometer:-	, Block diagram of Digital				
_		ntages ,Applications				
1.4 Digital V	1.4 Digital Weighing Machines:-, Block diagram of Digital					
weighing ma	achine, Working					
Mechanical and Electronic Weighing Machines.						
2 Electronic	ally controlled I	High power Home appliances	22	14	CO1,CO	L1,L2
					3	

2.1 Microwave Oven:- Microwaves, Advantages of microwaves over conventional electrical heating system, working principle, Microwave oven functional block diagram, Safety instructions for Microwaves. 2.2 Washing Machines:- working principle, Electronic controller for washing machines, Washing machine hardware and washing cycle. Introduction to types of washing machinesSemi automatic, Fully automatic, Fuzzy logic washing machines. 2.3 Air conditioning:- Introduction to Air Conditioning, Components of Air Conditioning systems, All water Air Conditioning systems, All air Air conditioning systems ,Introduction to unitary and Central Air conditioning systems and Split Air conditioner 2.4 Refrigerators:- Refrigeration ,Vapour Compression Refrigeration System, Domestic Refrigerator 2.5 Voltage Stabilizers:-Introduction to voltage Stabilizer, Need for voltage stabilizer, Need for voltage stabilizer, Specifications, Working of basic Series stabilizer.				
3 Electronicallycontrolled Entertainment, Commercial and surveillance appliances	18	12	CO1,CO 3	L1,L2
3.1 Digital Camera:- Working principle of digital camera, Techanical specifications Features of typical Electronic Surveillance system 3.2 Bar codes:- Introduction to Bar codes, Bar code formats(UPC and AIAC), Barcode scanner and decoder 3.3Xerography:- Operation of photocopier				
3.4Metal detector :- Working and Applications (LEVEL4)				L4
4 Electronically controlled Communication appliances	13	08	CO1,CO 3	L1,L2
4.1 Cordless phones:- Transmitter section and Receiver Section4.2 EPABX System :- Block diagram and working				
4.3 Public Addressing System(LEVEL4)			_	L4
5 Maintenance and safety Precautions	06	04	CO4	L1,L2
5.1 Electricity in home, Dangers of electricity, Safety Precautions, Hazards associated with electric current voltage, Approaches to prevent accidents, Fire prevention and fire fighting.				
Total	75	48	-	

7. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of lectures	
1	Electronically controlled low power Home appliances	10	16
2	Electronically controlled High power Home appliances	14	22
3	Electronically controlled Entertainment ,Commercial and	12	18
	surveillance appliances		
4	Electronically controlled Communication appliances	08	13
5	Maintenance and safety Precautions	04	06
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Use of Test and Measurement Instruments and Interpretation of manuals of	
1.	CRO, Multimeter, Power Supply, and Function Generator	
2	Identification and testing of different types of components such as	
	Resistors, Capacitors, Diodes, Transistors, Switches and Relays	
3	Soldering and Desoldering	
4	Explore the various functions of Washing machines and locate various	
	sensors used in that washing machines	
5	Check the wiring of ACs and explore all functions	
6	Test various functions of Microwave ovens	
7	Explore settings Digital Cameras	
8	Demonstration of Photocopy Machine	
9	Demonstration of EPABX system	
10	Demonstration of CCTV Or simple Public address system	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
No	Tutorial Exercise	Marks
1	NIL	
•••	Total	

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	S.P.Bali	Consumer Electronics	Pearson Education
2	B.R. Gupta and V. Singhal	Consumer Electronics	New Age Int. Pub.

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	J S Chitode	Consumer Electronics	Technical Publications Pune

(EX625) ROBOTICS

1. AIM

To develop required skills in the students so that they are able to acquire the following competency:

1. Operate and maintain different types of robots.

2. COURSE OBJECTIVES:

Nowadays industries demand continuous and fine quality work in different processes of industries. All process is generally done by humans and as we know humans are not able to give same quantity and quality of work with respect to time, environment and complexity of the work. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators which operate this robot need some basic knowledge of robotics. To fulfil the demand of industries and advancement in technology it is necessary for the electronic engineers to have knowledge and skill in robotics.

The students will able to:

- 1. Explain different components of robot & compare various types of Robot.
- 2. Study the working of various robot controller & Differentiate between various robot controllers.
- 3. Explain the kinematics & vision system of Robot.
- 4. Compare the uses of various sensors & warning system & appreciate the application of robot s in various industries.

3. PRE-REQUISITES:

Students should know

- 1. Basics of C programming.
- 2. Embedded systems.

4. TEACHING AND EXAMINATION SCHEME

Semester	VI									
							Exan	nination	Scheme	
ROBOTICS		Periods/Week (in hours)		Total Credits	Theory Marks		Practical Marks		Total Marks	
		L	T	P	С	TH	TM	TW	PR/OR	
		3	-	2	5	75	25	25	25	150
(EX625 Robotie	*									

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- CO1. Define and select right parameters for robot for given application.
- CO2. Distinguish between various robot controller & Actuators.
- CO3. Maintain the different types of robot sensors.
- CO4. Operate the robot through software and trouble-shoot minor problems.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	Engg. Tools, Experime ntatn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	3	3	3	0	2	0
CO2	2	1	1	2	0	1	0
CO3	3	2	3	3	1	2	2
CO4	3	3	3	3	0	2	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	3	1
CO2	2	0
CO3	3	2
CO4	3	2

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	CO	Level
1. ELEMENTS OF ROBOT	18	12	1/3	1/2
1.1 Basic Concepts in (Fundamentals of) robotics:				
Introduction, Definition, Automation and robotics, Generations of				
Robots, Robot applications.				
1.2 Different classifications of robot:				3
By application (Material handling, operations, Assembly,				
Inspection), by coordinate system (Cartesian, Cylindrical, Spherical,				
Articulated, SCARA), by actuation (drive) system (Hydraulic,				
Electric, Pneumatic), by control system (Limited sequence, playback				
with point to point control, playback with continuous control,				
Intelligent Robots) and by programming method (Lead-through,				
Textual).				

1.3 Robot anatomy:				
Links and joints, Joint notation. Degree of Freedom. Robot				
resolution, accuracy and repeatability. Concept of workspace.				
2. ROBOT CONTROLLER AND ACTUATION SYSTEMS	15	10	1/2/4	1/2
2.1 Robot controller: open and closed loop control systems				
(explanation with block diagram, advantages & comparison)				
Controllers: (On-off, Proportional, Integral, Proportional plus				
Integral, Proportional plus derivative, Proportional plus integral plus				
derivative- explain in brief)				
2.2 Robot Actuation and feed-back components Registron Sengers (Retentionneters, encoders), Actuators (DC serve)				
Position Sensors (Potentiometers, encoders), Actuators (DC servo motors, Stepper motors, Pneumatic and Hydraulic), Velocity				
Sensors, Power Transmission Systems (Gears, Power Screws)				
3. ROBOT EFFECTORS, SENSORS & MACHINE VISION	15	10	2/4	1/2
3.1 Robot End Effectors: Grippers and Tools.				
Basic Definition and operation: Mechanical grippers, Vacuum cups,				
Magnetic grippers. Tools as end effectors.				
3.2 Transducers and Sensors				
Desirable features of sensors.				
Basic working principle:- Tactile sensors (Touch, Force), Proximity				
and Range sensors (Light and Ultrasonic)				
Uses/ Applications of sensors in Robotics. 3.2 Machine Vision				2
Introduction to Machine Vision (Sensing and digitizing Image,				3
Image processing and analysis, Application) (block diagram and				
explanation only)				
Robotic applications of machine vision				
4. ROBOT PROGRAMMING	12	6	4	1/2
4.1 Robot programming				
Lead-through (Powered & Manual) and Textual robot languages.				
Robot Programme as a Path in Space, Motion Interpolation, WAIT,				
SIGNAL and DELAY Commands, Capabilities and Limitations of				
Lead through Methods, Robot Language Structure.				
Comparison of Lead-through (Powered & Manual) v/s Textual robot				
languages 5. ROBOTICS APPLICATIONS, MAINTAINANCE &	15	10	3/4	1/2
SAFETY	13	10	3/4	1/2
5.1 Robotics Applications				
Material Transfer (Pick and place)				
Process operations (Arc wielding)				
Assembly Application (Peg in hole)				
Inspection Application (Sensor/Vision based inspection)				
Non Industrial Application (Health Care, Research and Exploration				
etc.)				
Robot maintenance: Need and Types. General Safety Norms, aspects and precautions in robot handling.				
General Safety Norms, aspects and precautions in robot handling. Total	75	48		
Total	13	טד		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	ELEMENTS OF ROBOT	12	18
2	ROBOT CONTROLLER AND ACTUATION SYSTEMS	10	15
3	ROBOT EFFECTORS, SENSORS & MACHINE VISION	10	15
4	ROBOT PROGRAMMING	06	12
5	ROBOTICS APPLICATIONS, MAINTAINANCE & SAFETY	10	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	Electronic Control of a DC Servo motor	
2.	Electronic Control of a Stepper motor	
3.	Electronic control of BLDC motor	
4.	Interfacing of proximity and range sensors to Arduino	
5.	Interfacing of Accelerometers and Gyroscopes sensors to Arduino	
6.	Interfacing of force sensors to Arduino	
7.	Programming a robot arm for straight line, circular and curved paths	
8.	Programming a robot arm for pick and place operation.	
	Total	25
No	Class room Assignments	Marks
1	Atleast 02 assignments	
2		
•••		
No	Tutorial Exercise	Marks
•••	Total	25

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Mikkel P.Groover,	Industrial Robotics Technology-	Tata McGraw Hill
	Mite chell weiss,	Programming and Applications	
	Rogern Negal and		
	Nicholes G.Odress		
2	R.K.Mittal,	Robotics and controls	Tata McGraw Hill
	I.J.Nagrath		
3	K.S. Fu, R. C.	Robotics: Control, Sensing, Vision	McGraw Hill
	Gonzalez, C.S.G.	and Intelligence	
	Lee		

Reference Books for further study

S. No.	Author		Title of Books	Publishers
1	Doughlaes	−R.	An Introduction to robotics	
	Halcoojr			

Internet and Web Resources

S. No.	Author	Title of Books	Publishers
1	http://enggmechanical.blogspot.com/2010/06/classification-of-robot.html		

(EX626) Image Processing

1. AIM

This course will expose the students with fundamentals of digital image processing and prepare them for a strong footing to pursue advanced digital image processing techniques.

2. COURSE OBJECTIVES:

This course will provide students exposure to digital image processing and impart fundamental image transformations and enhancements along with an insight into image compression. The course will also teach the students to detect basic object boundaries and know how to represent them.

3. PRE-REQUISITES:

- 1. Basic Mathematics (algebra)
- 2. Digital Electronics
- 3. Concept of time and frequency domain

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Periods/Week		Total		Examination Scheme				
course title (in hours)		Credits	The Mai	•	Practical Marks		Total Marks		
(EX626)	L	T	P	С	TH	TM	TW	PR/OR	
Image Processing	3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain how an image is represented and processed in a computer system.
- 2. Apply suitable transformations to images for specific processing.
- 3. Make use of suitable algorithms to minimize noise in images and enhance them.
- 4. Compare different algorithms used for processing an image and decide the most suitable, depending on the requirement and resources at hand.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledg	Problem Analysis	Design and Devlopme nt of	ngg. ools, tperim atn&	Engg. Practices for Society,Su stainabilit	Project Managem ent	Life -long Learning
CO1	3	2	2	0	0	0	2
CO2	3	1	2	1	0	0	0
CO3	3	2	1	0	0	0	2
CO4	2	3	1	2	2	0	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	1
CO2	3	1
CO3	2	2
CO4	3	2

M = Marks	Thr = Teaching hours	CO = Course Objectives	M	Thr	CO	LE
						VE
						LS
UNIT 1: Intro	oduction and Digital Ima	nge Fundamentals	12	08	1,2,	L1,
	<u> </u>				3	L2
1.1 What is	digital image processing	ng, applications of Digital Image				
Processing.						
1.2 Digital Im	nage Fundamentals: Hun	nan visual system- Structure of the				
human eye,	Image formation in the	e eye, brightness adaptation and				
discrimination						
1.3 Image san	npling and quantization –	Basic Concepts, representing digital				
images.						
1.4 Basic relat	ionships between pixels					
UNIT 2: Imag	ge transformation		15	08	1,2,	L1
	_				3,4	
2.1 Basic	Gray Level Transform	nations: Image negatives, Log				

transformation, gamma correction.				
2.2 Concept of Piecewise –Linear Transformation Functions: contrast				
stretching, gray-level slicing, bit-plane slicing.				
2.3 Significance of a Histogram in image processing				
UNIT 3. Image enhancement	18	12	1,2, 3,4	
3.1 Sources of noises (Gaussian, rayleigh, gamma, exponential, uniform, salt and pepper noise)—only brief description)				L1, L2, L3
3.2 Spatial Filtering (smoothing filters, averaging and median filters, sharpening filters- Laplacian filter)				
3.3 Enhancement using arithmetic/logic operations, Image subtraction, image averaging				
UNIT 4: Image Segmentation, Representation & Description				
4.1 Point, line and edge detection	18	12	1,2, 3,4	L1, 2,3
4.2 Basic Global Thresholding				
4.3 Regions Based segmentation- Region growing, region splitting and merging				
4.4 Representation: Chain codes, Polygonal approximations, Signatures				
4.5 Descriptors: Some simple descriptors, Shape numbers, Regional descriptors: Topological descriptors				
UNIT 5: Image Compression				
5.1 Fundamentals of redundancies	12	08	1,2, 3,4	L1, L2
5.2 Basic Compression Methods: Huffman coding, Arithmetic coding, Bitplane coding, Constant area coding, run length coding.				
5.3 JPEG Compression standard				
	75	48		

7. COURSE DELIVERY:

The Course will be delivered through lectures and practicals.

8. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit	Unit	Number	Marks
No		of hours	
1	Introduction and Digital Image Fundamentals	08	12
2	Image transformation	08	15
3	Image enhancement	12	18
4	Image Segmentation, Representation & Description	12	18
5	Image Compression	08	12
	Total	48	75

9. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practicals						
1.	To read and display images						
2.	To identify different types of images and convert from one type to the other						
3.	Gray scale transformations programs						
4.	Programs illustrating Histogram Processing of an image						
5.	Filtering of an image by an averaging filter						
6.	Filtering of an image by a median filter						
7.	Sharpening of an image using Laplacian						
8.	Identification of segments in an image using Region filling/ growing						
	algorithms						
9.	Hough Transform for object detection						
10.	Study of JPEG Compression standard						

10. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Rafael C Gonzalez and Richard E Woods	Digital Image Processing	Pearson Education.
2	Anil K Jain	Fundamentals of Digital Image Processing	PHI

Reference Books for further study

S. No.	Author	Title of Books	Publishers		
1	Bhabatosh Chanda	Digital Image Processing	PHI		
	and Dwijesh				
	Majumder				
2	Rafel C. Gonzalez	Digital Image Processing Using	Pearson Education		
	and Richard E.	Matlab			
	Woods				

EX627 Smart Grid Technology

1. AIM

This course will present the concept of Smart grids from the multidisciplinary perspectives. It will provide technology aspects of smart grids including smart metering infrastructure, demand side management, electric vehicles, power quality management and information technology.

2. COURSE OBJECTIVES:

The students will able to:

- 1. Understand concepts of smart grid and various issues related to it
- 2. Identify different technologies for effective utilization of smart grids.
- 3. Understand power quality management issues

3. PRE-REQUISITES:

Students should know

1. Basic Electrical Engineering

4. TEACHING AND EXAMINATION SCHEME

Semester									
Periods/Week			Total	Examination Scheme					
Course code & course title	(in ho	urs)		Credits	Theory Practical Marks Marks		Total Marks		
EX627 Smart	L	T	P	C	TH	TM	TW	PR/OR	
Grid Technology	3	-	2	5	75	25	25	-	125

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Explain different concepts of smart grids.
- 2. Compare conventional grid and smart grid, resilient and self-healing grid
- 3. Analyze implementation of different technologies and power quality issues in Smart Grid
- 4. Justify selection of network and computing for smart grid applications

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentati on & Testing	Engg. Practices for Society, Sustainability	Project Management	Life -long Learning
CO1	2	1					1
CO2	2	1			2		3
CO3	2	2	2	2	2	2	2
CO4	2	2	1	3	3	2	2

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1		
CO2		
CO3		
CO4		

M = Marks Thr = Teaching hours CO = Course Objectives				
Unit	M	Thr	CO	Le
				vel
1 Introduction To Smart Grid			CO	S L1
1 Introduction 10 Smart Grid	9	6	1	LI
	3	2	CO	L1
1.1 Evolution of Electric grid			1	
Definition, need and benefits of smart grid				
1.2 Opportunities and challenges in smart grid	6	4	CO	L2
Difference between conventional grid and smart grid		-	$\frac{2}{2}$	
Concept of Resilient & self-healing Grid				
2 Smart Grid Technologies	18	14	СО	L1,
2 Smart Grid Technologies	10	14	1,3	3
	6	4	CO	L1
2.1 Demand response, architecture for DR implementation			1	
Smart Substations, Substation Automation				
2.2 Transmission systems: EMS, HVDC, Wide area monitoring,	6	6	CO	L3
protection and control			3	
Distribution systems: DMS, Volt/VAr control, fault detection, isolation				
and service restoration, outage management	(1	CO	Т 2
2.3 Phase Shifting Transformers, Plug in Hybrid Electric Vehicles	6	4	CO 3	L3
(PHEV), Vehicle to Grid.			3	
3 Smart Meters And Advanced Metering Infrastructure	18	10	CO	L3
			3	
	6	3	CO	L3
3.1 Introduction to Smart meters, Advanced Metering Infrastructure			3	
(AMI) drivers and benefits, AMI protocols, AMI needs in the smart grid.				
3.2 Automatic Meter Reading (AMR), Outage	6	4	CO	L3
Management System (OMS), Smart Sensors, Home & Building			3	
Automation,				
3.3 Phase Measurement Unit (PMU).	6	3	СО	L3

Intelligent Electronic Devices(IED) & their application for monitoring & protection			3	
4 Power Quality Management In Smart Grid	15	9	CO 3	L3
4.1 Power Quality & EMC in Smart Grid	6	4	CO 3	L3
4.2 Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid	6	3	CO 3	L3
4.3 Web based Power Quality monitoring.	3	2	CO 3	L3
5 Information Technology For Smart Grid	15	9	CO 3,4	L4
5.1 Local Area Network (LAN), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN).	6	3	CO 4	L4
5.2 Broadband over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.	9	6	CO 3	L3
Total	75	48		

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Unit No	Unit	Number of lectures	Marks
1	Introduction To Smart Grid	6	9
2	Smart Grid Technologies	14	18
3	Smart Meters And Advanced Metering Infrastructure	10	18
4	Power Quality Management In Smart Grid	9	15
5	Information Technology For Smart Grid	9	15
	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical (Minimum 8)	Marks
11.	Simulation & analysis of Grid connected micro grids.	
12.	Simulation & analysis of isolated micro grids.	
13.	Case study on DSM/ Demand response	
14.	Study & analysis of Smart grid technologies	
15.	Study of Communication techniques for smart grids	
16.	Simulation & analysis of different storage systems in micro grid	
17.	Study & analysis of power quality issues in Smart grid	
18.	Field visit to the site of the smart grids	
19.	Study of IEEE standards for implementation of smart grids	
20.	Case study of smart grids	
	Total	25
No	Class room Assignments	Marks
1	At least 2 assignments	
2		
No	Tutorial Exercise	Marks
1	NIL	
2		
•••	Total	

11. LEARNING RESOURCES

Text Books

S. No.	Author	Title of Books	Publishers
1	Janaka Ekanayake,	Smart Grid: Technology and	Wiley press
	Nick Jenkins	Application	
2	Clark W. Gellings	The Smart Grid: Enabling Energy	CRC Press
		Efficiency and Demand Response	
3	James Momoh	Smart Grid: Fundamentals of	Wiley IEEE press
		Design and Analysis	
4	James Claude	Smart Grids	Wiley Blackwell
	Sabonnadière,		
	Nouredine Hadjsaid		

(EX628) VLSI Design and Application

1. AIM

To introduce students to chip fabrication and various steps involved in VLSI design flow.

2. COURSE OBJECTIVES:

The Student will be able to:

- 1. Implement functions using MOS logic following prescribed design rules through mask layouts
- 2. Develop and model simple MOS circuits through programming

3. PRE-REQUISITES:

Students should have knowledge of

- 1. Basic Concepts from Semiconductor Physics and Electronics
- 2. Fundamental Concepts from Digital Electronics
- 3. Basic Computer

4. TEACHING AND EXAMINATION SCHEME

Semester VI									
Course code &	Peri	iods/V	Veek	Total	Examination Scheme				
course title	(iı	n houi	rs)	Credits	The Mai	•	1	actical [arks	Total Marks
(EX628)	L	T	P	С	TH	TM	TW	PR/OR	
VLSI Design and Application	3	-	2	5	75	25	25	25	150

5. COURSE OUTCOMES:

On successful completion of the course, the student will be able to:

- 1. Understand the technologies/ processes involved in fabrication of ICs, operation of MOS devices, design rules, modeling commands and the complete VLSI design flow.
- 2. Apply the knowledge of MOS devices to explore channel length modulation, logic design, circuit modeling and design analysis.
- 3. Analyze the operation of MOS circuits, Implementation of Boolean functions, modeled circuits and VLSI design stages.
- 4. Evaluate and Select suitable MOS invertors, design implementation and programmable platforms based on comparative performance and application.

6. Mapping Course Outcomes with Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
	Basic & Discipline Specific Knowledge	Problem Analysis	Design and Development of Solutions	Engg. Tools, Experimentation & Testing	Engg. Practices for Society, Sustainability & Environment	Project Management	Life -long Learning
CO1	3	0	1	0	2	0	2
CO2	3	2	3	2	0	2	0
CO3	3	2	1	2	0	2	3
CO4	3	3	3	1	2	2	3

Relationship: Low-1 Medium-2 High-3

	PSO1	PSO2
CO1	2	2
CO2	3	2
CO3	3	2
CO4	3	2

M = Marks	Thr = Teaching hours	CO = Course Outcomes				
Unit			M	Thr	CO	Level
1 INTROD	UCTION TO TECHNOI	LOGIES IN IC FABRICATION	15	08	CO 1	L1
	miconductor Technology epitaxy, deposition, etching	: Concept of wafer processing, g in chip fabrication.				
1.2 Description and Diffusi		hotolithography, Ion Implantation				
1.3 CMOS Tec	chnology: Description of n	-well and p-well CMOS processes				
1.4 Introduction	on to Impact of chip fabrica	ation on environment and solutions				
2 MOS TRA	ANSISTORS		15	10	CO1/2 /3/4	L1/L2
2.1 Operation a & Depletio		NMOS transistor (Enhancement				

2.3 Description of channel length modulation 2.4 Concept of CMOS transistor, Operation of a CMOS Inverter with DC characteristics, Comparison of CMOS inverter with NMOS inverter and resistive load MOS inverter. 3 VLSI LOGIC DESIGN 3.1 Definition of fan in and fan out, Concept of pass transistor, Implementation of logic gates (OR, AND, NOR and NAND) using pass transistors and CMOS Logic 3.2 Implementation of simple Boolean expressions using pass transistors and CMOS logic, Comparison of design implementations 3.3 Study of lambda rules and magic layout editor 3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 /3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 /3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit and logic), Brief description of design simulation and its types (circuit and logic), Brief description of design simulation and its types (circuit and logic), Brief description of design simulation and its types (circuit and logic), Brief description of design simulation and its	2.2 Operation and V I Characteristics of PMOS transistor (Enhancement & Depletion types)			
characteristics, Comparison of CMOS inverter with NMOS inverter and resistive load MOS inverter. 3 VLSI LOGIC DESIGN 3.1 Definition of fan in and fan out, Concept of pass transistor, Implementation of logic gates (OR, AND, NOR and NAND) using pass transistors and CMOS Logic 3.2 Implementation of simple Boolean expressions using pass transistors and CMOS logic, Comparison of design implementations 3.3 Study of lambda rules and magic layout editor 3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 L1/L2 /3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 /3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (circuit, timing, switch level and gate level, Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design simulation and tits types (circuit, timing, switch level and gate level, Brief description of design simulation and tits types (circuit, timing, switch level and gate level, Brief description of design simulation and tits types (circuit, timing, switch level and gate level, Brief description of design simulation and tits types (circuit, timing, switch level and gate level, Brief description of design simulation and tits types (circuit, timing, switch level and gate level, Brief description of design simulation and tits type	2.3 Description of channel length modulation			
3.1 Definition of fan in and fan out, Concept of pass transistor, Implementation of logic gates (OR, AND, NOR and NAND) using pass transistors and CMOS Logic 3.2 Implementation of simple Boolean expressions using pass transistors and CMOS logic, Comparison of design implementations 3.3 Study of lambda rules and magic layout editor 3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 L1/L2 /3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 /3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) 5.4 Features and Working of FPGA and CPLD, Comparison between them.	characteristics, Comparison of CMOS inverter with NMOS inverter and			
Implementation of logic gates (OR, AND, NOR and NAND) using pass transistors and CMOS Logic 3.2 Implementation of simple Boolean expressions using pass transistors and CMOS logic, Comparison of design implementations 3.3 Study of lambda rules and magic layout editor 3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 L1/L2 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) 5.4 Features and Working of FPGA and CPLD, Comparison between them.	3 VLSI LOGIC DESIGN	15	10	L1/L2
and CMOS logic, Comparison of design implementations 3.3 Study of lambda rules and magic layout editor 3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 L1/L2 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) 5.4 Features and Working of FPGA and CPLD, Comparison between them.	Implementation of logic gates (OR, AND, NOR and NAND) using pass			
3.4 Drawing of Stick diagrams 3.5 Drawing of mask layouts with concept of Euler paths L3 L3,4 4 INTRODUCTION TO SPICE 12 08 CO1/2 L1/L2 /3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) L3 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 /3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4				L3
3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 J/3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 J/3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	3.3 Study of lambda rules and magic layout editor			
3.5 Drawing of mask layouts with concept of Euler paths 4 INTRODUCTION TO SPICE 12 08 CO1/2 J/3/4 4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 J/3/4 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	3.4 Drawing of Stick diagrams			L3
4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.				L3,4
4.1 Introduction to SPICE Programming commands 4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.				
4.2 Modeling of MOS circuits using SPICE (level 1 model equations) 5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	4 INTRODUCTION TO SPICE	12	08	L1/L2
5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS 18 12 CO1/2 L1/L2 5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	4.1 Introduction to SPICE Programming commands			
5.1 Description of VLSI Design flow, Brief description of design analysis and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	4.2 Modeling of MOS circuits using SPICE (level 1 model equations)			L3
and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and functional) 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	5 VLSI DESIGN METHODOLOGIES AND APPLICATIONS	18	12	L1/L2
built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) L3,4 5.4 Features and Working of FPGA and CPLD, Comparison between them.	and its types (circuit and logic), Brief description of design simulation and its types (circuit, timing, switch level and gate level, Brief description of design verification and its types (electrical, timing and			
5.4 Features and Working of FPGA and CPLD, Comparison between them.	functional)			
	5.2 General test procedure of an IC, Scan based test, boundary scan design,			
Total 75 48	5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation			L3,4
	 5.2 General test procedure of an IC, Scan based test, boundary scan design, built in self test (BIST), Automatic test pattern generation 5.3 fault model (stuck at 1 and stuck at 0 fault modeling) 			L3,4

8. COURSE DELIVERY:

The Course will be delivered through lectures, class room interactions, exercises and case studies

9. SPECIFICATION TABLE FOR THEORY/ MACRO-LESSON PLAN

Uni t No	Unit	Number of lectures	Marks
1	INTRODUCTION TO TECHNOLOGIES IN IC FABRICATION	08	15
2	MOS TRANSISTORS	10	15
3	VLSI LOGIC DESIGN	10	15
4	INTRODUCTION TO SPICE	08	12
5	VLSI DESIGN METHODOLOGIES AND APPLICATIONS	12	18
•	Total	48	75

10. SPECIFICATION TABLE FOR TERM WORK & PRACTICALS HOURS

No	Practical	Marks
1.	V I Characteristics of N MOS Transistor	
2.	DC Characteristics of CMOS Inverter	
3.	Mask Layout for logic gates with lambda rules using CMOS logic in Magic Editor	
4.	Mask Layout for Boolean Expressions using CMOS logic in Magic Editor	
5.	Study of commands in SPICE with hands on practice	
6.	Modeling of logic gates using SPICE	
7.	Modeling of Boolean Expressions using SPICE	
8.	Implementation of logic gates using FPGA	
	Total	25
No	Class room Assignments	Marks
1	At least 10 covering all units above	
2		
No	Tutorial Exercise	Marks
1	NIL	
	Total	25

11. LEARNING RESOURCES:

Text Books

S. No.	Author	Title of Books	Publishers
1	Sung-Mo Kang, Yusuf	CMOS Digital Integrated Circuits	Mc Graw Hill
	Leblebici	Analysis & Design	Education
2	Neil H. E. Weste, David	CMOS VLSI design-A circuit	Pearson Education
	Harris	and systems Perspective	
3	Jan M Rabaey	Digital Integrated Circuits- A	Pearson Education
		design Perspective	
4	Douglas Pucknell,	Basic VLSI design	PHI
	Kamran Eshraghian		
5	Wayne Wolf	Modern VLSI Design	Prentice Hall

Reference Books for further study

S. No.	Author	Title of Books	Publishers
1	J Bhaskar	VHDL Primer	PHI
2	Eugene D. Fabricius	Introduction to VLSI Design	Mc. Graw Hill
	_	_	Education
3	Stephen Brown,	Fundamental of Digital Logic with	Mc Graw Hill
	Zvonco Vranesic	VHDL design	Education